Vulnerabilities (CVE)

Filtered by vendor Debian Subscribe
Total 9011 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2022-26365 4 Debian, Fedoraproject, Linux and 1 more 4 Debian Linux, Fedora, Linux Kernel and 1 more 2024-11-21 3.6 LOW 7.1 HIGH
Linux disk/nic frontends data leaks T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Linux Block and Network PV device frontends don't zero memory regions before sharing them with the backend (CVE-2022-26365, CVE-2022-33740). Additionally the granularity of the grant table doesn't allow sharing less than a 4K page, leading to unrelated data residing in the same 4K page as data shared with a backend being accessible by such backend (CVE-2022-33741, CVE-2022-33742).
CVE-2022-26364 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 7.2 HIGH 6.7 MEDIUM
x86 pv: Insufficient care with non-coherent mappings T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen maintains a type reference count for pages, in addition to a regular reference count. This scheme is used to maintain invariants required for Xen's safety, e.g. PV guests may not have direct writeable access to pagetables; updates need auditing by Xen. Unfortunately, Xen's safety logic doesn't account for CPU-induced cache non-coherency; cases where the CPU can cause the content of the cache to be different to the content in main memory. In such cases, Xen's safety logic can incorrectly conclude that the contents of a page is safe.
CVE-2022-26363 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 7.2 HIGH 6.7 MEDIUM
x86 pv: Insufficient care with non-coherent mappings T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Xen maintains a type reference count for pages, in addition to a regular reference count. This scheme is used to maintain invariants required for Xen's safety, e.g. PV guests may not have direct writeable access to pagetables; updates need auditing by Xen. Unfortunately, Xen's safety logic doesn't account for CPU-induced cache non-coherency; cases where the CPU can cause the content of the cache to be different to the content in main memory. In such cases, Xen's safety logic can incorrectly conclude that the contents of a page is safe.
CVE-2022-26362 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 6.9 MEDIUM 6.4 MEDIUM
x86 pv: Race condition in typeref acquisition Xen maintains a type reference count for pages, in addition to a regular reference count. This scheme is used to maintain invariants required for Xen's safety, e.g. PV guests may not have direct writeable access to pagetables; updates need auditing by Xen. Unfortunately, the logic for acquiring a type reference has a race condition, whereby a safely TLB flush is issued too early and creates a window where the guest can re-establish the read/write mapping before writeability is prohibited.
CVE-2022-26361 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 4.4 MEDIUM 7.8 HIGH
IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR") for Intel VT-d or Unity Mapping ranges for AMD-Vi. These are typically used for platform tasks such as legacy USB emulation. Since the precise purpose of these regions is unknown, once a device associated with such a region is active, the mappings of these regions need to remain continuouly accessible by the device. This requirement has been violated. Subsequent DMA or interrupts from the device may have unpredictable behaviour, ranging from IOMMU faults to memory corruption.
CVE-2022-26360 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 4.4 MEDIUM 7.8 HIGH
IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR") for Intel VT-d or Unity Mapping ranges for AMD-Vi. These are typically used for platform tasks such as legacy USB emulation. Since the precise purpose of these regions is unknown, once a device associated with such a region is active, the mappings of these regions need to remain continuouly accessible by the device. This requirement has been violated. Subsequent DMA or interrupts from the device may have unpredictable behaviour, ranging from IOMMU faults to memory corruption.
CVE-2022-26359 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 4.4 MEDIUM 7.8 HIGH
IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR") for Intel VT-d or Unity Mapping ranges for AMD-Vi. These are typically used for platform tasks such as legacy USB emulation. Since the precise purpose of these regions is unknown, once a device associated with such a region is active, the mappings of these regions need to remain continuouly accessible by the device. This requirement has been violated. Subsequent DMA or interrupts from the device may have unpredictable behaviour, ranging from IOMMU faults to memory corruption.
CVE-2022-26358 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 4.4 MEDIUM 7.8 HIGH
IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Certain PCI devices in a system might be assigned Reserved Memory Regions (specified via Reserved Memory Region Reporting, "RMRR") for Intel VT-d or Unity Mapping ranges for AMD-Vi. These are typically used for platform tasks such as legacy USB emulation. Since the precise purpose of these regions is unknown, once a device associated with such a region is active, the mappings of these regions need to remain continuouly accessible by the device. This requirement has been violated. Subsequent DMA or interrupts from the device may have unpredictable behaviour, ranging from IOMMU faults to memory corruption.
CVE-2022-26357 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 6.2 MEDIUM 7.0 HIGH
race in VT-d domain ID cleanup Xen domain IDs are up to 15 bits wide. VT-d hardware may allow for only less than 15 bits to hold a domain ID associating a physical device with a particular domain. Therefore internally Xen domain IDs are mapped to the smaller value range. The cleaning up of the housekeeping structures has a race, allowing for VT-d domain IDs to be leaked and flushes to be bypassed.
CVE-2022-26356 3 Debian, Fedoraproject, Xen 3 Debian Linux, Fedora, Xen 2024-11-21 4.0 MEDIUM 5.6 MEDIUM
Racy interactions between dirty vram tracking and paging log dirty hypercalls Activation of log dirty mode done by XEN_DMOP_track_dirty_vram (was named HVMOP_track_dirty_vram before Xen 4.9) is racy with ongoing log dirty hypercalls. A suitably timed call to XEN_DMOP_track_dirty_vram can enable log dirty while another CPU is still in the process of tearing down the structures related to a previously enabled log dirty mode (XEN_DOMCTL_SHADOW_OP_OFF). This is due to lack of mutually exclusive locking between both operations and can lead to entries being added in already freed slots, resulting in a memory leak.
CVE-2022-26354 2 Debian, Qemu 2 Debian Linux, Qemu 2024-11-21 2.1 LOW 3.2 LOW
A flaw was found in the vhost-vsock device of QEMU. In case of error, an invalid element was not detached from the virtqueue before freeing its memory, leading to memory leakage and other unexpected results. Affected QEMU versions <= 6.2.0.
CVE-2022-26353 2 Debian, Qemu 2 Debian Linux, Qemu 2024-11-21 5.0 MEDIUM 7.5 HIGH
A flaw was found in the virtio-net device of QEMU. This flaw was inadvertently introduced with the fix for CVE-2021-3748, which forgot to unmap the cached virtqueue elements on error, leading to memory leakage and other unexpected results. Affected QEMU version: 6.2.0.
CVE-2022-26307 2 Debian, Libreoffice 2 Debian Linux, Libreoffice 2024-11-21 N/A 8.8 HIGH
LibreOffice supports the storage of passwords for web connections in the user’s configuration database. The stored passwords are encrypted with a single master key provided by the user. A flaw in LibreOffice existed where master key was poorly encoded resulting in weakening its entropy from 128 to 43 bits making the stored passwords vulerable to a brute force attack if an attacker has access to the users stored config. This issue affects: The Document Foundation LibreOffice 7.2 versions prior to 7.2.7; 7.3 versions prior to 7.3.3.
CVE-2022-26306 2 Debian, Libreoffice 2 Debian Linux, Libreoffice 2024-11-21 N/A 7.5 HIGH
LibreOffice supports the storage of passwords for web connections in the user’s configuration database. The stored passwords are encrypted with a single master key provided by the user. A flaw in LibreOffice existed where the required initialization vector for encryption was always the same which weakens the security of the encryption making them vulnerable if an attacker has access to the user's configuration data. This issue affects: The Document Foundation LibreOffice 7.2 versions prior to 7.2.7; 7.3 versions prior to 7.3.1.
CVE-2022-26291 2 Debian, Long Range Zip Project 2 Debian Linux, Long Range Zip 2024-11-21 4.3 MEDIUM 5.5 MEDIUM
lrzip v0.641 was discovered to contain a multiple concurrency use-after-free between the functions zpaq_decompress_buf() and clear_rulist(). This vulnerability allows attackers to cause a Denial of Service (DoS) via a crafted Irz file.
CVE-2022-26110 2 Debian, Wisc 2 Debian Linux, Htcondor 2024-11-21 6.5 MEDIUM 8.8 HIGH
An issue was discovered in HTCondor 8.8.x before 8.8.16, 9.0.x before 9.0.10, and 9.1.x before 9.6.0. When a user authenticates to an HTCondor daemon via the CLAIMTOBE method, the user can then impersonate any entity when issuing additional commands to that daemon.
CVE-2022-25857 2 Debian, Snakeyaml Project 2 Debian Linux, Snakeyaml 2024-11-21 N/A 7.5 HIGH
The package org.yaml:snakeyaml from 0 and before 1.31 are vulnerable to Denial of Service (DoS) due missing to nested depth limitation for collections.
CVE-2022-25763 3 Apache, Debian, Fedoraproject 3 Traffic Server, Debian Linux, Fedora 2024-11-21 N/A 7.5 HIGH
Improper Input Validation vulnerability in HTTP/2 request validation of Apache Traffic Server allows an attacker to create smuggle or cache poison attacks. This issue affects Apache Traffic Server 8.0.0 to 9.1.2.
CVE-2022-25648 3 Debian, Fedoraproject, Git 4 Debian Linux, Extra Packages For Enterprise Linux, Fedora and 1 more 2024-11-21 7.5 HIGH 8.1 HIGH
The package git before 1.11.0 are vulnerable to Command Injection via git argument injection. When calling the fetch(remote = 'origin', opts = {}) function, the remote parameter is passed to the git fetch subcommand in a way that additional flags can be set. The additional flags can be used to perform a command injection.
CVE-2022-25647 4 Debian, Google, Netapp and 1 more 6 Debian Linux, Gson, Active Iq Unified Manager and 3 more 2024-11-21 5.0 MEDIUM 7.7 HIGH
The package com.google.code.gson:gson before 2.8.9 are vulnerable to Deserialization of Untrusted Data via the writeReplace() method in internal classes, which may lead to DoS attacks.