Filtered by vendor Debian
Subscribe
Total
9011 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2022-42322 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 5.5 MEDIUM |
Xenstore: Cooperating guests can create arbitrary numbers of nodes T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Since the fix of XSA-322 any Xenstore node owned by a removed domain will be modified to be owned by Dom0. This will allow two malicious guests working together to create an arbitrary number of Xenstore nodes. This is possible by domain A letting domain B write into domain A's local Xenstore tree. Domain B can then create many nodes and reboot. The nodes created by domain B will now be owned by Dom0. By repeating this process over and over again an arbitrary number of nodes can be created, as Dom0's number of nodes isn't limited by Xenstore quota. | |||||
CVE-2022-42321 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 6.5 MEDIUM |
Xenstore: Guests can crash xenstored via exhausting the stack Xenstored is using recursion for some Xenstore operations (e.g. for deleting a sub-tree of Xenstore nodes). With sufficiently deep nesting levels this can result in stack exhaustion on xenstored, leading to a crash of xenstored. | |||||
CVE-2022-42320 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 7.0 HIGH |
Xenstore: Guests can get access to Xenstore nodes of deleted domains Access rights of Xenstore nodes are per domid. When a domain is gone, there might be Xenstore nodes left with access rights containing the domid of the removed domain. This is normally no problem, as those access right entries will be corrected when such a node is written later. There is a small time window when a new domain is created, where the access rights of a past domain with the same domid as the new one will be regarded to be still valid, leading to the new domain being able to get access to a node which was meant to be accessible by the removed domain. For this to happen another domain needs to write the node before the newly created domain is being introduced to Xenstore by dom0. | |||||
CVE-2022-42319 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 6.5 MEDIUM |
Xenstore: Guests can cause Xenstore to not free temporary memory When working on a request of a guest, xenstored might need to allocate quite large amounts of memory temporarily. This memory is freed only after the request has been finished completely. A request is regarded to be finished only after the guest has read the response message of the request from the ring page. Thus a guest not reading the response can cause xenstored to not free the temporary memory. This can result in memory shortages causing Denial of Service (DoS) of xenstored. | |||||
CVE-2022-42318 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42317 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42316 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42315 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42314 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42313 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42312 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42311 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 6.5 MEDIUM |
Xenstore: guests can let run xenstored out of memory T[his CNA information record relates to multiple CVEs; the text explains which aspects/vulnerabilities correspond to which CVE.] Malicious guests can cause xenstored to allocate vast amounts of memory, eventually resulting in a Denial of Service (DoS) of xenstored. There are multiple ways how guests can cause large memory allocations in xenstored: - - by issuing new requests to xenstored without reading the responses, causing the responses to be buffered in memory - - by causing large number of watch events to be generated via setting up multiple xenstore watches and then e.g. deleting many xenstore nodes below the watched path - - by creating as many nodes as allowed with the maximum allowed size and path length in as many transactions as possible - - by accessing many nodes inside a transaction | |||||
CVE-2022-42310 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 5.5 MEDIUM |
Xenstore: Guests can create orphaned Xenstore nodes By creating multiple nodes inside a transaction resulting in an error, a malicious guest can create orphaned nodes in the Xenstore data base, as the cleanup after the error will not remove all nodes already created. When the transaction is committed after this situation, nodes without a valid parent can be made permanent in the data base. | |||||
CVE-2022-42309 | 3 Debian, Fedoraproject, Xen | 3 Debian Linux, Fedora, Xen | 2024-11-21 | N/A | 8.8 HIGH |
Xenstore: Guests can crash xenstored Due to a bug in the fix of XSA-115 a malicious guest can cause xenstored to use a wrong pointer during node creation in an error path, resulting in a crash of xenstored or a memory corruption in xenstored causing further damage. Entering the error path can be controlled by the guest e.g. by exceeding the quota value of maximum nodes per domain. | |||||
CVE-2022-42259 | 6 Citrix, Debian, Linux and 3 more | 13 Hypervisor, Debian Linux, Linux Kernel and 10 more | 2024-11-21 | N/A | 4.4 MEDIUM |
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an integer overflow may lead to denial of service. | |||||
CVE-2022-42258 | 6 Citrix, Debian, Linux and 3 more | 13 Hypervisor, Debian Linux, Linux Kernel and 10 more | 2024-11-21 | N/A | 5.3 MEDIUM |
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an integer overflow may lead to denial of service, data tampering, or information disclosure. | |||||
CVE-2022-42257 | 6 Citrix, Debian, Linux and 3 more | 13 Hypervisor, Debian Linux, Linux Kernel and 10 more | 2024-11-21 | N/A | 5.3 MEDIUM |
NVIDIA GPU Display Driver for Linux contains a vulnerability in the kernel mode layer (nvidia.ko), where an integer overflow may lead to information disclosure, data tampering or denial of service. | |||||
CVE-2022-42004 | 4 Debian, Fasterxml, Netapp and 1 more | 4 Debian Linux, Jackson-databind, Oncommand Workflow Automation and 1 more | 2024-11-21 | N/A | 7.5 HIGH |
In FasterXML jackson-databind before 2.13.4, resource exhaustion can occur because of a lack of a check in BeanDeserializer._deserializeFromArray to prevent use of deeply nested arrays. An application is vulnerable only with certain customized choices for deserialization. | |||||
CVE-2022-42003 | 4 Debian, Fasterxml, Netapp and 1 more | 4 Debian Linux, Jackson-databind, Oncommand Workflow Automation and 1 more | 2024-11-21 | N/A | 7.5 HIGH |
In FasterXML jackson-databind before versions 2.13.4.1 and 2.12.17.1, resource exhaustion can occur because of a lack of a check in primitive value deserializers to avoid deep wrapper array nesting, when the UNWRAP_SINGLE_VALUE_ARRAYS feature is enabled. | |||||
CVE-2022-41999 | 2 Debian, Openimageio | 2 Debian Linux, Openimageio | 2024-11-21 | N/A | 7.5 HIGH |
A denial of service vulnerability exists in the DDS native tile reading functionality of OpenImageIO Project OpenImageIO v2.3.19.0 and v2.4.4.2. A specially-crafted .dds can lead to denial of service. An attacker can provide a malicious file to trigger this vulnerability. |