Total
151 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2022-32213 | 6 Debian, Fedoraproject, Llhttp and 3 more | 6 Debian Linux, Fedora, Llhttp and 3 more | 2024-02-28 | N/A | 6.5 MEDIUM |
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly parse and validate Transfer-Encoding headers and can lead to HTTP Request Smuggling (HRS). | |||||
CVE-2022-32214 | 4 Debian, Llhttp, Nodejs and 1 more | 4 Debian Linux, Llhttp, Node.js and 1 more | 2024-02-28 | N/A | 6.5 MEDIUM |
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not strictly use the CRLF sequence to delimit HTTP requests. This can lead to HTTP Request Smuggling (HRS). | |||||
CVE-2022-32215 | 6 Debian, Fedoraproject, Llhttp and 3 more | 6 Debian Linux, Fedora, Llhttp and 3 more | 2024-02-28 | N/A | 6.5 MEDIUM |
The llhttp parser <v14.20.1, <v16.17.1 and <v18.9.1 in the http module in Node.js does not correctly handle multi-line Transfer-Encoding headers. This can lead to HTTP Request Smuggling (HRS). | |||||
CVE-2022-3786 | 3 Fedoraproject, Nodejs, Openssl | 3 Fedora, Node.js, Openssl | 2024-02-28 | N/A | 7.5 HIGH |
A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed a malicious certificate or for an application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address in a certificate to overflow an arbitrary number of bytes containing the `.' character (decimal 46) on the stack. This buffer overflow could result in a crash (causing a denial of service). In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects. | |||||
CVE-2022-32212 | 4 Debian, Fedoraproject, Nodejs and 1 more | 4 Debian Linux, Fedora, Node.js and 1 more | 2024-02-28 | N/A | 8.1 HIGH |
A OS Command Injection vulnerability exists in Node.js versions <14.20.0, <16.20.0, <18.5.0 due to an insufficient IsAllowedHost check that can easily be bypassed because IsIPAddress does not properly check if an IP address is invalid before making DBS requests allowing rebinding attacks. | |||||
CVE-2022-36046 | 2 Nodejs, Vercel | 2 Node.js, Next.js | 2024-02-28 | N/A | 5.3 MEDIUM |
Next.js is a React framework that can provide building blocks to create web applications. All of the following must be true to be affected by this CVE: Next.js version 12.2.3, Node.js version above v15.0.0 being used with strict `unhandledRejection` exiting AND using next start or a [custom server](https://nextjs.org/docs/advanced-features/custom-server). Deployments on Vercel ([vercel.com](https://vercel.com/)) are not affected along with similar environments where `next-server` isn't being shared across requests. | |||||
CVE-2022-21824 | 4 Debian, Netapp, Nodejs and 1 more | 11 Debian Linux, Oncommand Insight, Oncommand Workflow Automation and 8 more | 2024-02-28 | 6.4 MEDIUM | 8.2 HIGH |
Due to the formatting logic of the "console.table()" function it was not safe to allow user controlled input to be passed to the "properties" parameter while simultaneously passing a plain object with at least one property as the first parameter, which could be "__proto__". The prototype pollution has very limited control, in that it only allows an empty string to be assigned to numerical keys of the object prototype.Node.js >= 12.22.9, >= 14.18.3, >= 16.13.2, and >= 17.3.1 use a null protoype for the object these properties are being assigned to. | |||||
CVE-2021-44533 | 3 Debian, Nodejs, Oracle | 9 Debian Linux, Node.js, Graalvm and 6 more | 2024-02-28 | 5.0 MEDIUM | 5.3 MEDIUM |
Node.js < 12.22.9, < 14.18.3, < 16.13.2, and < 17.3.1 did not handle multi-value Relative Distinguished Names correctly. Attackers could craft certificate subjects containing a single-value Relative Distinguished Name that would be interpreted as a multi-value Relative Distinguished Name, for example, in order to inject a Common Name that would allow bypassing the certificate subject verification.Affected versions of Node.js that do not accept multi-value Relative Distinguished Names and are thus not vulnerable to such attacks themselves. However, third-party code that uses node's ambiguous presentation of certificate subjects may be vulnerable. | |||||
CVE-2021-44531 | 2 Nodejs, Oracle | 8 Node.js, Graalvm, Mysql Cluster and 5 more | 2024-02-28 | 5.8 MEDIUM | 7.4 HIGH |
Accepting arbitrary Subject Alternative Name (SAN) types, unless a PKI is specifically defined to use a particular SAN type, can result in bypassing name-constrained intermediates. Node.js < 12.22.9, < 14.18.3, < 16.13.2, and < 17.3.1 was accepting URI SAN types, which PKIs are often not defined to use. Additionally, when a protocol allows URI SANs, Node.js did not match the URI correctly.Versions of Node.js with the fix for this disable the URI SAN type when checking a certificate against a hostname. This behavior can be reverted through the --security-revert command-line option. | |||||
CVE-2021-44532 | 3 Debian, Nodejs, Oracle | 9 Debian Linux, Node.js, Graalvm and 6 more | 2024-02-28 | 5.0 MEDIUM | 5.3 MEDIUM |
Node.js < 12.22.9, < 14.18.3, < 16.13.2, and < 17.3.1 converts SANs (Subject Alternative Names) to a string format. It uses this string to check peer certificates against hostnames when validating connections. The string format was subject to an injection vulnerability when name constraints were used within a certificate chain, allowing the bypass of these name constraints.Versions of Node.js with the fix for this escape SANs containing the problematic characters in order to prevent the injection. This behavior can be reverted through the --security-revert command-line option. | |||||
CVE-2021-4044 | 3 Netapp, Nodejs, Openssl | 26 500f, 500f Firmware, A250 and 23 more | 2024-02-28 | 5.0 MEDIUM | 7.5 HIGH |
Internally libssl in OpenSSL calls X509_verify_cert() on the client side to verify a certificate supplied by a server. That function may return a negative return value to indicate an internal error (for example out of memory). Such a negative return value is mishandled by OpenSSL and will cause an IO function (such as SSL_connect() or SSL_do_handshake()) to not indicate success and a subsequent call to SSL_get_error() to return the value SSL_ERROR_WANT_RETRY_VERIFY. This return value is only supposed to be returned by OpenSSL if the application has previously called SSL_CTX_set_cert_verify_callback(). Since most applications do not do this the SSL_ERROR_WANT_RETRY_VERIFY return value from SSL_get_error() will be totally unexpected and applications may not behave correctly as a result. The exact behaviour will depend on the application but it could result in crashes, infinite loops or other similar incorrect responses. This issue is made more serious in combination with a separate bug in OpenSSL 3.0 that will cause X509_verify_cert() to indicate an internal error when processing a certificate chain. This will occur where a certificate does not include the Subject Alternative Name extension but where a Certificate Authority has enforced name constraints. This issue can occur even with valid chains. By combining the two issues an attacker could induce incorrect, application dependent behaviour. Fixed in OpenSSL 3.0.1 (Affected 3.0.0). | |||||
CVE-2021-22930 | 4 Debian, Netapp, Nodejs and 1 more | 4 Debian Linux, Nextgen Api, Node.js and 1 more | 2024-02-28 | 7.5 HIGH | 9.8 CRITICAL |
Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to a use after free attack where an attacker might be able to exploit the memory corruption, to change process behavior. | |||||
CVE-2021-3672 | 6 C-ares Project, Fedoraproject, Nodejs and 3 more | 17 C-ares, Fedora, Node.js and 14 more | 2024-02-28 | 6.8 MEDIUM | 5.6 MEDIUM |
A flaw was found in c-ares library, where a missing input validation check of host names returned by DNS (Domain Name Servers) can lead to output of wrong hostnames which might potentially lead to Domain Hijacking. The highest threat from this vulnerability is to confidentiality and integrity as well as system availability. | |||||
CVE-2021-22918 | 2 Nodejs, Siemens | 2 Node.js, Sinec Infrastructure Network Services | 2024-02-28 | 5.0 MEDIUM | 5.3 MEDIUM |
Node.js before 16.4.1, 14.17.2, 12.22.2 is vulnerable to an out-of-bounds read when uv__idna_toascii() is used to convert strings to ASCII. The pointer p is read and increased without checking whether it is beyond pe, with the latter holding a pointer to the end of the buffer. This can lead to information disclosures or crashes. This function can be triggered via uv_getaddrinfo(). | |||||
CVE-2021-22921 | 3 Microsoft, Nodejs, Siemens | 3 Windows, Node.js, Sinec Infrastructure Network Services | 2024-02-28 | 4.4 MEDIUM | 7.8 HIGH |
Node.js before 16.4.1, 14.17.2, and 12.22.2 is vulnerable to local privilege escalation attacks under certain conditions on Windows platforms. More specifically, improper configuration of permissions in the installation directory allows an attacker to perform two different escalation attacks: PATH and DLL hijacking. | |||||
CVE-2021-22939 | 5 Debian, Netapp, Nodejs and 2 more | 8 Debian Linux, Nextgen Api, Node.js and 5 more | 2024-02-28 | 5.0 MEDIUM | 5.3 MEDIUM |
If the Node.js https API was used incorrectly and "undefined" was in passed for the "rejectUnauthorized" parameter, no error was returned and connections to servers with an expired certificate would have been accepted. | |||||
CVE-2021-22940 | 5 Debian, Netapp, Nodejs and 2 more | 7 Debian Linux, Nextgen Api, Node.js and 4 more | 2024-02-28 | 5.0 MEDIUM | 7.5 HIGH |
Node.js before 16.6.1, 14.17.5, and 12.22.5 is vulnerable to a use after free attack where an attacker might be able to exploit the memory corruption, to change process behavior. | |||||
CVE-2021-22931 | 4 Netapp, Nodejs, Oracle and 1 more | 10 Active Iq Unified Manager, Nextgen Api, Oncommand Insight and 7 more | 2024-02-28 | 7.5 HIGH | 9.8 CRITICAL |
Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to Remote Code Execution, XSS, Application crashes due to missing input validation of host names returned by Domain Name Servers in Node.js dns library which can lead to output of wrong hostnames (leading to Domain Hijacking) and injection vulnerabilities in applications using the library. | |||||
CVE-2020-8201 | 3 Fedoraproject, Nodejs, Opensuse | 3 Fedora, Node.js, Leap | 2024-02-28 | 5.8 MEDIUM | 7.4 HIGH |
Node.js < 12.18.4 and < 14.11 can be exploited to perform HTTP desync attacks and deliver malicious payloads to unsuspecting users. The payloads can be crafted by an attacker to hijack user sessions, poison cookies, perform clickjacking, and a multitude of other attacks depending on the architecture of the underlying system. The attack was possible due to a bug in processing of carrier-return symbols in the HTTP header names. | |||||
CVE-2018-21270 | 1 Nodejs | 1 Node.js | 2024-02-28 | 5.8 MEDIUM | 6.5 MEDIUM |
Versions less than 0.0.6 of the Node.js stringstream module are vulnerable to an out-of-bounds read because of allocation of uninitialized buffers when a number is passed in the input stream (when using Node.js 4.x). |