Total
51 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2024-20286 | 1 Cisco | 232 N9k-c92160yc-x, N9k-c92300yc, N9k-c92304qc and 229 more | 2024-10-22 | N/A | 8.8 HIGH |
A vulnerability in the Python interpreter of Cisco NX-OS Software could allow an authenticated, low-privileged, local attacker to escape the Python sandbox and gain unauthorized access to the underlying operating system of the device. The vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by manipulating specific functions within the Python interpreter. A successful exploit could allow an attacker to escape the Python sandbox and execute arbitrary commands on the underlying operating system with the privileges of the authenticated user. Note: An attacker must be authenticated with Python execution privileges to exploit these vulnerabilities. For more information regarding Python execution privileges, see product-specific documentation, such as the section of the Cisco Nexus 9000 Series NX-OS Programmability Guide. | |||||
CVE-2024-20285 | 1 Cisco | 232 N9k-c92160yc-x, N9k-c92300yc, N9k-c92304qc and 229 more | 2024-10-22 | N/A | 8.8 HIGH |
A vulnerability in the Python interpreter of Cisco NX-OS Software could allow an authenticated, low-privileged, local attacker to escape the Python sandbox and gain unauthorized access to the underlying operating system of the device. The vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by manipulating specific functions within the Python interpreter. A successful exploit could allow an attacker to escape the Python sandbox and execute arbitrary commands on the underlying operating system with the privileges of the authenticated user. Note: An attacker must be authenticated with Python execution privileges to exploit these vulnerabilities. For more information regarding Python execution privileges, see product-specific documentation, such as the section of the Cisco Nexus 9000 Series NX-OS Programmability Guide. | |||||
CVE-2024-20284 | 1 Cisco | 232 N9k-c92160yc-x, N9k-c92300yc, N9k-c92304qc and 229 more | 2024-10-17 | N/A | 8.8 HIGH |
A vulnerability in the Python interpreter of Cisco NX-OS Software could allow an authenticated, low-privileged, local attacker to escape the Python sandbox and gain unauthorized access to the underlying operating system of the device. The vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by manipulating specific functions within the Python interpreter. A successful exploit could allow an attacker to escape the Python sandbox and execute arbitrary commands on the underlying operating system with the privileges of the authenticated user. Note: An attacker must be authenticated with Python execution privileges to exploit these vulnerabilities. For more information regarding Python execution privileges, see product-specific documentation, such as the section of the Cisco Nexus 9000 Series NX-OS Programmability Guide. | |||||
CVE-2024-20399 | 1 Cisco | 201 Mds 9000, Mds 9100, Mds 9132t and 198 more | 2024-09-19 | N/A | 6.7 MEDIUM |
A vulnerability in the CLI of Cisco NX-OS Software could allow an authenticated user in possession of Administrator credentials to execute arbitrary commands as root on the underlying operating system of an affected device. This vulnerability is due to insufficient validation of arguments that are passed to specific configuration CLI commands. An attacker could exploit this vulnerability by including crafted input as the argument of an affected configuration CLI command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with the privileges of root. Note: To successfully exploit this vulnerability on a Cisco NX-OS device, an attacker must have Administrator credentials. The following Cisco devices already allow administrative users to access the underlying operating system through the bash-shell feature, so, for these devices, this vulnerability does not grant any additional privileges: Nexus 3000 Series Switches Nexus 7000 Series Switches that are running Cisco NX-OS Software releases 8.1(1) and later Nexus 9000 Series Switches in standalone NX-OS mode | |||||
CVE-2023-44487 | 32 Akka, Amazon, Apache and 29 more | 311 Http Server, Opensearch Data Prepper, Apisix and 308 more | 2024-08-14 | N/A | 7.5 HIGH |
The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | |||||
CVE-2023-20115 | 1 Cisco | 82 Nexus 3048, Nexus 31108pc-v, Nexus 31108tc-v and 79 more | 2024-02-28 | N/A | 5.4 MEDIUM |
A vulnerability in the SFTP server implementation for Cisco Nexus 3000 Series Switches and 9000 Series Switches in standalone NX-OS mode could allow an authenticated, remote attacker to download or overwrite files from the underlying operating system of an affected device. This vulnerability is due to a logic error when verifying the user role when an SFTP connection is opened to an affected device. An attacker could exploit this vulnerability by connecting and authenticating via SFTP as a valid, non-administrator user. A successful exploit could allow the attacker to read or overwrite files from the underlying operating system with the privileges of the authenticated user. There are workarounds that address this vulnerability. | |||||
CVE-2023-20089 | 1 Cisco | 47 Nexus 9000v, Nexus 92160yc-x, Nexus 92300yc and 44 more | 2024-02-28 | N/A | 6.5 MEDIUM |
A vulnerability in the Link Layer Discovery Protocol (LLDP) feature for Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) Mode could allow an unauthenticated, adjacent attacker to cause a memory leak, which could result in an unexpected reload of the device. This vulnerability is due to incorrect error checking when parsing ingress LLDP packets. An attacker could exploit this vulnerability by sending a steady stream of crafted LLDP packets to an affected device. A successful exploit could allow the attacker to cause a memory leak, which could result in a denial of service (DoS) condition when the device unexpectedly reloads. Note: This vulnerability cannot be exploited by transit traffic through the device. The crafted LLDP packet must be targeted to a directly connected interface, and the attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). In addition, the attack surface for this vulnerability can be reduced by disabling LLDP on interfaces where it is not required. | |||||
CVE-2023-20050 | 1 Cisco | 111 Mds 9000, Mds 9100, Mds 9132t and 108 more | 2024-02-28 | N/A | 7.8 HIGH |
A vulnerability in the CLI of Cisco NX-OS Software could allow an authenticated, local attacker to execute arbitrary commands on the underlying operating system of an affected device. This vulnerability is due to insufficient validation of arguments that are passed to specific CLI commands. An attacker could exploit this vulnerability by including crafted input as the argument of an affected command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with the privileges of the currently logged-in user. | |||||
CVE-2022-20823 | 1 Cisco | 294 Nexus 3016, Nexus 3016 Firmware, Nexus 3016q and 291 more | 2024-02-28 | N/A | 8.6 HIGH |
A vulnerability in the OSPF version 3 (OSPFv3) feature of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to incomplete input validation of specific OSPFv3 packets. An attacker could exploit this vulnerability by sending a malicious OSPFv3 link-state advertisement (LSA) to an affected device. A successful exploit could allow the attacker to cause the OSPFv3 process to crash and restart multiple times, causing the affected device to reload and resulting in a DoS condition. Note: The OSPFv3 feature is disabled by default. To exploit this vulnerability, an attacker must be able to establish a full OSPFv3 neighbor state with an affected device. For more information about exploitation conditions, see the Details section of this advisory. | |||||
CVE-2022-20824 | 1 Cisco | 288 Mds 9506, Mds 9506 Firmware, Mds 9513 and 285 more | 2024-02-28 | N/A | 8.8 HIGH |
A vulnerability in the Cisco Discovery Protocol feature of Cisco FXOS Software and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to execute arbitrary code with root privileges or cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper input validation of specific values that are within a Cisco Discovery Protocol message. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol packet to an affected device. A successful exploit could allow the attacker to execute arbitrary code with root privileges or cause the Cisco Discovery Protocol process to crash and restart multiple times, which would cause the affected device to reload, resulting in a DoS condition. Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). | |||||
CVE-2021-34714 | 1 Cisco | 225 Firepower 4100, Firepower 4110, Firepower 4112 and 222 more | 2024-02-28 | 5.7 MEDIUM | 7.4 HIGH |
A vulnerability in the Unidirectional Link Detection (UDLD) feature of Cisco FXOS Software, Cisco IOS Software, Cisco IOS XE Software, Cisco IOS XR Software, and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause an affected device to reload. This vulnerability is due to improper input validation of the UDLD packets. An attacker could exploit this vulnerability by sending specifically crafted UDLD packets to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a denial of service (DoS) condition. Note: The UDLD feature is disabled by default, and the conditions to exploit this vulnerability are strict. An attacker must have full control of a directly connected device. On Cisco IOS XR devices, the impact is limited to the reload of the UDLD process. | |||||
CVE-2021-1584 | 1 Cisco | 42 Nexus 9000, Nexus 9000v, Nexus 92160yc-x and 39 more | 2024-02-28 | 7.2 HIGH | 6.7 MEDIUM |
A vulnerability in Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) mode could allow an authenticated, local attacker to elevate privileges on an affected device. This vulnerability is due to insufficient restrictions during the execution of a specific CLI command. An attacker with administrative privileges could exploit this vulnerability by performing a command injection attack on the vulnerable command. A successful exploit could allow the attacker to access the underlying operating system as root. | |||||
CVE-2021-1590 | 1 Cisco | 103 Nexus 3000, Nexus 3048, Nexus 31108pc-v and 100 more | 2024-02-28 | 4.3 MEDIUM | 5.3 MEDIUM |
A vulnerability in the implementation of the system login block-for command for Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a login process to unexpectedly restart, causing a denial of service (DoS) condition. This vulnerability is due to a logic error in the implementation of the system login block-for command when an attack is detected and acted upon. An attacker could exploit this vulnerability by performing a brute-force login attack on an affected device. A successful exploit could allow the attacker to cause a login process to reload, which could result in a delay during authentication to the affected device. | |||||
CVE-2021-1587 | 1 Cisco | 63 Nexus 3000, Nexus 3048, Nexus 31108pc-v and 60 more | 2024-02-28 | 4.3 MEDIUM | 8.6 HIGH |
A vulnerability in the VXLAN Operation, Administration, and Maintenance (OAM) feature of Cisco NX-OS Software, known as NGOAM, could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper handling of specific packets with a Transparent Interconnection of Lots of Links (TRILL) OAM EtherType. An attacker could exploit this vulnerability by sending crafted packets, including the TRILL OAM EtherType of 0x8902, to a device that is part of a VXLAN Ethernet VPN (EVPN) fabric. A successful exploit could allow the attacker to cause an affected device to experience high CPU usage and consume excessive system resources, which may result in overall control plane instability and cause the affected device to reload. Note: The NGOAM feature is disabled by default. | |||||
CVE-2021-1586 | 1 Cisco | 41 Nexus 9000v, Nexus 92160yc-x, Nexus 92300yc and 38 more | 2024-02-28 | 5.0 MEDIUM | 8.6 HIGH |
A vulnerability in the Multi-Pod or Multi-Site network configurations for Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) mode could allow an unauthenticated, remote attacker to unexpectedly restart the device, resulting in a denial of service (DoS) condition. This vulnerability exists because TCP traffic sent to a specific port on an affected device is not properly sanitized. An attacker could exploit this vulnerability by sending crafted TCP data to a specific port that is listening on a public-facing IP address for the Multi-Pod or Multi-Site configuration. A successful exploit could allow the attacker to cause the device to restart unexpectedly, resulting in a DoS condition. | |||||
CVE-2021-1583 | 1 Cisco | 42 Nexus 9000, Nexus 9000v, Nexus 92160yc-x and 39 more | 2024-02-28 | 2.1 LOW | 4.4 MEDIUM |
A vulnerability in the fabric infrastructure file system access control of Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) mode could allow an authenticated, local attacker to read arbitrary files on an affected system. This vulnerability is due to improper access control. An attacker with Administrator privileges could exploit this vulnerability by executing a specific vulnerable command on an affected device. A successful exploit could allow the attacker to read arbitrary files on the file system of the affected device. | |||||
CVE-2021-1588 | 1 Cisco | 67 Nexus 3000, Nexus 3048, Nexus 31108pc-v and 64 more | 2024-02-28 | 5.0 MEDIUM | 8.6 HIGH |
A vulnerability in the MPLS Operation, Administration, and Maintenance (OAM) feature of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper input validation when an affected device is processing an MPLS echo-request or echo-reply packet. An attacker could exploit this vulnerability by sending malicious MPLS echo-request or echo-reply packets to an interface that is enabled for MPLS forwarding on the affected device. A successful exploit could allow the attacker to cause the MPLS OAM process to crash and restart multiple times, causing the affected device to reload and resulting in a DoS condition. | |||||
CVE-2021-1230 | 1 Cisco | 41 Nexus 9000v, Nexus 92160yc-x, Nexus 92300yc and 38 more | 2024-02-28 | 7.1 HIGH | 7.5 HIGH |
A vulnerability with the Border Gateway Protocol (BGP) for Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) mode could allow an unauthenticated, remote attacker to cause a routing process to crash, which could lead to a denial of service (DoS) condition. This vulnerability is due to an issue with the installation of routes upon receipt of a BGP update. An attacker could exploit this vulnerability by sending a crafted BGP update to an affected device. A successful exploit could allow the attacker to cause the routing process to crash, which could cause the device to reload. This vulnerability applies to both Internal BGP (IBGP) and External BGP (EBGP). Note: The Cisco implementation of BGP accepts incoming BGP traffic from explicitly configured peers only. To exploit this vulnerability, an attacker would need to send a specific BGP update message over an established TCP connection that appears to come from a trusted BGP peer. | |||||
CVE-2021-1361 | 1 Cisco | 49 Nexus 3000, Nexus 3100, Nexus 3100-z and 46 more | 2024-02-28 | 9.4 HIGH | 9.1 CRITICAL |
A vulnerability in the implementation of an internal file management service for Cisco Nexus 3000 Series Switches and Cisco Nexus 9000 Series Switches in standalone NX-OS mode that are running Cisco NX-OS Software could allow an unauthenticated, remote attacker to create, delete, or overwrite arbitrary files with root privileges on the device. This vulnerability exists because TCP port 9075 is incorrectly configured to listen and respond to external connection requests. An attacker could exploit this vulnerability by sending crafted TCP packets to an IP address that is configured on a local interface on TCP port 9075. A successful exploit could allow the attacker to create, delete, or overwrite arbitrary files, including sensitive files that are related to the device configuration. For example, the attacker could add a user account without the device administrator knowing. | |||||
CVE-2021-1387 | 1 Cisco | 121 Nexus 3016, Nexus 3016q, Nexus 3048 and 118 more | 2024-02-28 | 4.3 MEDIUM | 8.6 HIGH |
A vulnerability in the network stack of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability exists because the software improperly releases resources when it processes certain IPv6 packets that are destined to an affected device. An attacker could exploit this vulnerability by sending multiple crafted IPv6 packets to an affected device. A successful exploit could cause the network stack to run out of available buffers, impairing operations of control plane and management plane protocols and resulting in a DoS condition. Manual intervention would be required to restore normal operations on the affected device. For more information about the impact of this vulnerability, see the Details section of this advisory. |