Total
8 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2024-20286 | 1 Cisco | 232 N9k-c92160yc-x, N9k-c92300yc, N9k-c92304qc and 229 more | 2024-10-22 | N/A | 8.8 HIGH |
A vulnerability in the Python interpreter of Cisco NX-OS Software could allow an authenticated, low-privileged, local attacker to escape the Python sandbox and gain unauthorized access to the underlying operating system of the device. The vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by manipulating specific functions within the Python interpreter. A successful exploit could allow an attacker to escape the Python sandbox and execute arbitrary commands on the underlying operating system with the privileges of the authenticated user. Note: An attacker must be authenticated with Python execution privileges to exploit these vulnerabilities. For more information regarding Python execution privileges, see product-specific documentation, such as the section of the Cisco Nexus 9000 Series NX-OS Programmability Guide. | |||||
CVE-2024-20285 | 1 Cisco | 232 N9k-c92160yc-x, N9k-c92300yc, N9k-c92304qc and 229 more | 2024-10-22 | N/A | 8.8 HIGH |
A vulnerability in the Python interpreter of Cisco NX-OS Software could allow an authenticated, low-privileged, local attacker to escape the Python sandbox and gain unauthorized access to the underlying operating system of the device. The vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by manipulating specific functions within the Python interpreter. A successful exploit could allow an attacker to escape the Python sandbox and execute arbitrary commands on the underlying operating system with the privileges of the authenticated user. Note: An attacker must be authenticated with Python execution privileges to exploit these vulnerabilities. For more information regarding Python execution privileges, see product-specific documentation, such as the section of the Cisco Nexus 9000 Series NX-OS Programmability Guide. | |||||
CVE-2024-20284 | 1 Cisco | 232 N9k-c92160yc-x, N9k-c92300yc, N9k-c92304qc and 229 more | 2024-10-17 | N/A | 8.8 HIGH |
A vulnerability in the Python interpreter of Cisco NX-OS Software could allow an authenticated, low-privileged, local attacker to escape the Python sandbox and gain unauthorized access to the underlying operating system of the device. The vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by manipulating specific functions within the Python interpreter. A successful exploit could allow an attacker to escape the Python sandbox and execute arbitrary commands on the underlying operating system with the privileges of the authenticated user. Note: An attacker must be authenticated with Python execution privileges to exploit these vulnerabilities. For more information regarding Python execution privileges, see product-specific documentation, such as the section of the Cisco Nexus 9000 Series NX-OS Programmability Guide. | |||||
CVE-2021-27853 | 3 Cisco, Ieee, Ietf | 308 Catalyst 3650-12x48fd-e, Catalyst 3650-12x48fd-l, Catalyst 3650-12x48fd-s and 305 more | 2024-02-28 | N/A | 4.7 MEDIUM |
Layer 2 network filtering capabilities such as IPv6 RA guard or ARP inspection can be bypassed using combinations of VLAN 0 headers and LLC/SNAP headers. | |||||
CVE-2022-20623 | 1 Cisco | 31 N9k-c92160yc-x, N9k-c92300yc, N9k-c92304qc and 28 more | 2024-02-28 | 7.1 HIGH | 7.5 HIGH |
A vulnerability in the rate limiter for Bidirectional Forwarding Detection (BFD) traffic of Cisco NX-OS Software for Cisco Nexus 9000 Series Switches could allow an unauthenticated, remote attacker to cause BFD traffic to be dropped on an affected device. This vulnerability is due to a logic error in the BFD rate limiter functionality. An attacker could exploit this vulnerability by sending a crafted stream of traffic through the device. A successful exploit could allow the attacker to cause BFD traffic to be dropped, resulting in BFD session flaps. BFD session flaps can cause route instability and dropped traffic, resulting in a denial of service (DoS) condition. This vulnerability applies to both IPv4 and IPv6 traffic. | |||||
CVE-2022-20650 | 1 Cisco | 66 N9k-c9316d-gx, N9k-c9332d-gx2b, N9k-c9348d-gx2a and 63 more | 2024-02-28 | 9.0 HIGH | 8.8 HIGH |
A vulnerability in the NX-API feature of Cisco NX-OS Software could allow an authenticated, remote attacker to execute arbitrary commands with root privileges. The vulnerability is due to insufficient input validation of user supplied data that is sent to the NX-API. An attacker could exploit this vulnerability by sending a crafted HTTP POST request to the NX-API of an affected device. A successful exploit could allow the attacker to execute arbitrary commands with root privileges on the underlying operating system. Note: The NX-API feature is disabled by default. | |||||
CVE-2022-20624 | 1 Cisco | 42 N9k-c9316d-gx, N9k-c9332d-gx2b, N9k-c9348d-gx2a and 39 more | 2024-02-28 | 7.8 HIGH | 7.5 HIGH |
A vulnerability in the Cisco Fabric Services over IP (CFSoIP) feature of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient validation of incoming CFSoIP packets. An attacker could exploit this vulnerability by sending crafted CFSoIP packets to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. | |||||
CVE-2022-20625 | 1 Cisco | 110 Firepower 4110, Firepower 4112, Firepower 4115 and 107 more | 2024-02-28 | 6.1 MEDIUM | 4.3 MEDIUM |
A vulnerability in the Cisco Discovery Protocol service of Cisco FXOS Software and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause the service to restart, resulting in a denial of service (DoS) condition. This vulnerability is due to improper handling of Cisco Discovery Protocol messages that are processed by the Cisco Discovery Protocol service. An attacker could exploit this vulnerability by sending a series of malicious Cisco Discovery Protocol messages to an affected device. A successful exploit could allow the attacker to cause the Cisco Discovery Protocol service to fail and restart. In rare conditions, repeated failures of the process could occur, which could cause the entire device to restart. |