Total
7644 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2024-49872 | 1 Linux | 1 Linux Kernel | 2024-11-13 | N/A | 4.7 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: mm/gup: fix memfd_pin_folios alloc race panic If memfd_pin_folios tries to create a hugetlb page, but someone else already did, then folio gets the value -EEXIST here: folio = memfd_alloc_folio(memfd, start_idx); if (IS_ERR(folio)) { ret = PTR_ERR(folio); if (ret != -EEXIST) goto err; then on the next trip through the "while start_idx" loop we panic here: if (folio) { folio_put(folio); To fix, set the folio to NULL on error. | |||||
CVE-2024-49864 | 1 Linux | 1 Linux Kernel | 2024-11-13 | N/A | 4.7 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix a race between socket set up and I/O thread creation In rxrpc_open_socket(), it sets up the socket and then sets up the I/O thread that will handle it. This is a problem, however, as there's a gap between the two phases in which a packet may come into rxrpc_encap_rcv() from the UDP packet but we oops when trying to wake the not-yet created I/O thread. As a quick fix, just make rxrpc_encap_rcv() discard the packet if there's no I/O thread yet. A better, but more intrusive fix would perhaps be to rearrange things such that the socket creation is done by the I/O thread. | |||||
CVE-2024-46869 | 1 Linux | 1 Linux Kernel | 2024-11-13 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btintel_pcie: Allocate memory for driver private data Fix driver not allocating memory for struct btintel_data which is used to store internal data. | |||||
CVE-2024-49902 | 1 Linux | 1 Linux Kernel | 2024-11-13 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: jfs: check if leafidx greater than num leaves per dmap tree syzbot report a out of bounds in dbSplit, it because dmt_leafidx greater than num leaves per dmap tree, add a checking for dmt_leafidx in dbFindLeaf. Shaggy: Modified sanity check to apply to control pages as well as leaf pages. | |||||
CVE-2024-49944 | 1 Linux | 1 Linux Kernel | 2024-11-13 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: sctp: set sk_state back to CLOSED if autobind fails in sctp_listen_start In sctp_listen_start() invoked by sctp_inet_listen(), it should set the sk_state back to CLOSED if sctp_autobind() fails due to whatever reason. Otherwise, next time when calling sctp_inet_listen(), if sctp_sk(sk)->reuse is already set via setsockopt(SCTP_REUSE_PORT), sctp_sk(sk)->bind_hash will be dereferenced as sk_state is LISTENING, which causes a crash as bind_hash is NULL. KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] RIP: 0010:sctp_inet_listen+0x7f0/0xa20 net/sctp/socket.c:8617 Call Trace: <TASK> __sys_listen_socket net/socket.c:1883 [inline] __sys_listen+0x1b7/0x230 net/socket.c:1894 __do_sys_listen net/socket.c:1902 [inline] | |||||
CVE-2024-49940 | 1 Linux | 1 Linux Kernel | 2024-11-13 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: l2tp: prevent possible tunnel refcount underflow When a session is created, it sets a backpointer to its tunnel. When the session refcount drops to 0, l2tp_session_free drops the tunnel refcount if session->tunnel is non-NULL. However, session->tunnel is set in l2tp_session_create, before the tunnel refcount is incremented by l2tp_session_register, which leaves a small window where session->tunnel is non-NULL when the tunnel refcount hasn't been bumped. Moving the assignment to l2tp_session_register is trivial but l2tp_session_create calls l2tp_session_set_header_len which uses session->tunnel to get the tunnel's encap. Add an encap arg to l2tp_session_set_header_len to avoid using session->tunnel. If l2tpv3 sessions have colliding IDs, it is possible for l2tp_v3_session_get to race with l2tp_session_register and fetch a session which doesn't yet have session->tunnel set. Add a check for this case. | |||||
CVE-2024-50122 | 1 Linux | 1 Linux Kernel | 2024-11-13 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: PCI: Hold rescan lock while adding devices during host probe Since adding the PCI power control code, we may end up with a race between the pwrctl platform device rescanning the bus and host controller probe functions. The latter need to take the rescan lock when adding devices or we may end up in an undefined state having two incompletely added devices and hit the following crash when trying to remove the device over sysfs: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 Internal error: Oops: 0000000096000004 [#1] SMP Call trace: __pi_strlen+0x14/0x150 kernfs_find_ns+0x80/0x13c kernfs_remove_by_name_ns+0x54/0xf0 sysfs_remove_bin_file+0x24/0x34 pci_remove_resource_files+0x3c/0x84 pci_remove_sysfs_dev_files+0x28/0x38 pci_stop_bus_device+0x8c/0xd8 pci_stop_bus_device+0x40/0xd8 pci_stop_and_remove_bus_device_locked+0x28/0x48 remove_store+0x70/0xb0 dev_attr_store+0x20/0x38 sysfs_kf_write+0x58/0x78 kernfs_fop_write_iter+0xe8/0x184 vfs_write+0x2dc/0x308 ksys_write+0x7c/0xec | |||||
CVE-2024-49952 | 1 Linux | 1 Linux Kernel | 2024-11-13 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: prevent nf_skb_duplicated corruption syzbot found that nf_dup_ipv4() or nf_dup_ipv6() could write per-cpu variable nf_skb_duplicated in an unsafe way [1]. Disabling preemption as hinted by the splat is not enough, we have to disable soft interrupts as well. [1] BUG: using __this_cpu_write() in preemptible [00000000] code: syz.4.282/6316 caller is nf_dup_ipv4+0x651/0x8f0 net/ipv4/netfilter/nf_dup_ipv4.c:87 CPU: 0 UID: 0 PID: 6316 Comm: syz.4.282 Not tainted 6.11.0-rc7-syzkaller-00104-g7052622fccb1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:93 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:119 check_preemption_disabled+0x10e/0x120 lib/smp_processor_id.c:49 nf_dup_ipv4+0x651/0x8f0 net/ipv4/netfilter/nf_dup_ipv4.c:87 nft_dup_ipv4_eval+0x1db/0x300 net/ipv4/netfilter/nft_dup_ipv4.c:30 expr_call_ops_eval net/netfilter/nf_tables_core.c:240 [inline] nft_do_chain+0x4ad/0x1da0 net/netfilter/nf_tables_core.c:288 nft_do_chain_ipv4+0x202/0x320 net/netfilter/nft_chain_filter.c:23 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xc3/0x220 net/netfilter/core.c:626 nf_hook+0x2c4/0x450 include/linux/netfilter.h:269 NF_HOOK_COND include/linux/netfilter.h:302 [inline] ip_output+0x185/0x230 net/ipv4/ip_output.c:433 ip_local_out net/ipv4/ip_output.c:129 [inline] ip_send_skb+0x74/0x100 net/ipv4/ip_output.c:1495 udp_send_skb+0xacf/0x1650 net/ipv4/udp.c:981 udp_sendmsg+0x1c21/0x2a60 net/ipv4/udp.c:1269 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x1a6/0x270 net/socket.c:745 ____sys_sendmsg+0x525/0x7d0 net/socket.c:2597 ___sys_sendmsg net/socket.c:2651 [inline] __sys_sendmmsg+0x3b2/0x740 net/socket.c:2737 __do_sys_sendmmsg net/socket.c:2766 [inline] __se_sys_sendmmsg net/socket.c:2763 [inline] __x64_sys_sendmmsg+0xa0/0xb0 net/socket.c:2763 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f4ce4f7def9 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f4ce5d4a038 EFLAGS: 00000246 ORIG_RAX: 0000000000000133 RAX: ffffffffffffffda RBX: 00007f4ce5135f80 RCX: 00007f4ce4f7def9 RDX: 0000000000000001 RSI: 0000000020005d40 RDI: 0000000000000006 RBP: 00007f4ce4ff0b76 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 0000000000000000 R14: 00007f4ce5135f80 R15: 00007ffd4cbc6d68 </TASK> | |||||
CVE-2024-50094 | 1 Linux | 1 Linux Kernel | 2024-11-13 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: sfc: Don't invoke xdp_do_flush() from netpoll. Yury reported a crash in the sfc driver originated from netpoll_send_udp(). The netconsole sends a message and then netpoll invokes the driver's NAPI function with a budget of zero. It is dedicated to allow driver to free TX resources, that it may have used while sending the packet. In the netpoll case the driver invokes xdp_do_flush() unconditionally, leading to crash because bpf_net_context was never assigned. Invoke xdp_do_flush() only if budget is not zero. | |||||
CVE-2024-50092 | 1 Linux | 1 Linux Kernel | 2024-11-13 | N/A | 3.3 LOW |
In the Linux kernel, the following vulnerability has been resolved: net: netconsole: fix wrong warning A warning is triggered when there is insufficient space in the buffer for userdata. However, this is not an issue since userdata will be sent in the next iteration. Current warning message: ------------[ cut here ]------------ WARNING: CPU: 13 PID: 3013042 at drivers/net/netconsole.c:1122 write_ext_msg+0x3b6/0x3d0 ? write_ext_msg+0x3b6/0x3d0 console_flush_all+0x1e9/0x330 The code incorrectly issues a warning when this_chunk is zero, which is a valid scenario. The warning should only be triggered when this_chunk is negative. | |||||
CVE-2024-50091 | 1 Linux | 1 Linux Kernel | 2024-11-12 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: dm vdo: don't refer to dedupe_context after releasing it Clear the dedupe_context pointer in a data_vio whenever ownership of the context is lost, so that vdo can't examine it accidentally. | |||||
CVE-2024-50090 | 1 Linux | 1 Linux Kernel | 2024-11-12 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix overflow in oa batch buffer By default xe_bb_create_job() appends a MI_BATCH_BUFFER_END to batch buffer, this is not a problem if batch buffer is only used once but oa reuses the batch buffer for the same metric and at each call it appends a MI_BATCH_BUFFER_END, printing the warning below and then overflowing. [ 381.072016] ------------[ cut here ]------------ [ 381.072019] xe 0000:00:02.0: [drm] Assertion `bb->len * 4 + bb_prefetch(q->gt) <= size` failed! platform: LUNARLAKE subplatform: 1 graphics: Xe2_LPG / Xe2_HPG 20.04 step B0 media: Xe2_LPM / Xe2_HPM 20.00 step B0 tile: 0 VRAM 0 B GT: 0 type 1 So here checking if batch buffer already have MI_BATCH_BUFFER_END if not append it. v2: - simply fix, suggestion from Ashutosh (cherry picked from commit 9ba0e0f30ca42a98af3689460063edfb6315718a) | |||||
CVE-2024-49946 | 1 Linux | 1 Linux Kernel | 2024-11-12 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: ppp: do not assume bh is held in ppp_channel_bridge_input() Networking receive path is usually handled from BH handler. However, some protocols need to acquire the socket lock, and packets might be stored in the socket backlog is the socket was owned by a user process. In this case, release_sock(), __release_sock(), and sk_backlog_rcv() might call the sk->sk_backlog_rcv() handler in process context. sybot caught ppp was not considering this case in ppp_channel_bridge_input() : WARNING: inconsistent lock state 6.11.0-rc7-syzkaller-g5f5673607153 #0 Not tainted -------------------------------- inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage. ksoftirqd/1/24 [HC0[0]:SC1[1]:HE1:SE0] takes: ffff0000db7f11e0 (&pch->downl){+.?.}-{2:2}, at: spin_lock include/linux/spinlock.h:351 [inline] ffff0000db7f11e0 (&pch->downl){+.?.}-{2:2}, at: ppp_channel_bridge_input drivers/net/ppp/ppp_generic.c:2272 [inline] ffff0000db7f11e0 (&pch->downl){+.?.}-{2:2}, at: ppp_input+0x16c/0x854 drivers/net/ppp/ppp_generic.c:2304 {SOFTIRQ-ON-W} state was registered at: lock_acquire+0x240/0x728 kernel/locking/lockdep.c:5759 __raw_spin_lock include/linux/spinlock_api_smp.h:133 [inline] _raw_spin_lock+0x48/0x60 kernel/locking/spinlock.c:154 spin_lock include/linux/spinlock.h:351 [inline] ppp_channel_bridge_input drivers/net/ppp/ppp_generic.c:2272 [inline] ppp_input+0x16c/0x854 drivers/net/ppp/ppp_generic.c:2304 pppoe_rcv_core+0xfc/0x314 drivers/net/ppp/pppoe.c:379 sk_backlog_rcv include/net/sock.h:1111 [inline] __release_sock+0x1a8/0x3d8 net/core/sock.c:3004 release_sock+0x68/0x1b8 net/core/sock.c:3558 pppoe_sendmsg+0xc8/0x5d8 drivers/net/ppp/pppoe.c:903 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg net/socket.c:745 [inline] __sys_sendto+0x374/0x4f4 net/socket.c:2204 __do_sys_sendto net/socket.c:2216 [inline] __se_sys_sendto net/socket.c:2212 [inline] __arm64_sys_sendto+0xd8/0xf8 net/socket.c:2212 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0x130/0x23c arch/arm64/kernel/syscall.c:132 do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151 el0_svc+0x54/0x168 arch/arm64/kernel/entry-common.c:712 el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598 irq event stamp: 282914 hardirqs last enabled at (282914): [<ffff80008b42e30c>] __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:151 [inline] hardirqs last enabled at (282914): [<ffff80008b42e30c>] _raw_spin_unlock_irqrestore+0x38/0x98 kernel/locking/spinlock.c:194 hardirqs last disabled at (282913): [<ffff80008b42e13c>] __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:108 [inline] hardirqs last disabled at (282913): [<ffff80008b42e13c>] _raw_spin_lock_irqsave+0x2c/0x7c kernel/locking/spinlock.c:162 softirqs last enabled at (282904): [<ffff8000801f8e88>] softirq_handle_end kernel/softirq.c:400 [inline] softirqs last enabled at (282904): [<ffff8000801f8e88>] handle_softirqs+0xa3c/0xbfc kernel/softirq.c:582 softirqs last disabled at (282909): [<ffff8000801fbdf8>] run_ksoftirqd+0x70/0x158 kernel/softirq.c:928 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&pch->downl); <Interrupt> lock(&pch->downl); *** DEADLOCK *** 1 lock held by ksoftirqd/1/24: #0: ffff80008f74dfa0 (rcu_read_lock){....}-{1:2}, at: rcu_lock_acquire+0x10/0x4c include/linux/rcupdate.h:325 stack backtrace: CPU: 1 UID: 0 PID: 24 Comm: ksoftirqd/1 Not tainted 6.11.0-rc7-syzkaller-g5f5673607153 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024 Call trace: dump_backtrace+0x1b8/0x1e4 arch/arm64/kernel/stacktrace.c:319 show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:326 __dump_sta ---truncated--- | |||||
CVE-2024-49947 | 1 Linux | 1 Linux Kernel | 2024-11-12 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: net: test for not too small csum_start in virtio_net_hdr_to_skb() syzbot was able to trigger this warning [1], after injecting a malicious packet through af_packet, setting skb->csum_start and thus the transport header to an incorrect value. We can at least make sure the transport header is after the end of the network header (with a estimated minimal size). [1] [ 67.873027] skb len=4096 headroom=16 headlen=14 tailroom=0 mac=(-1,-1) mac_len=0 net=(16,-6) trans=10 shinfo(txflags=0 nr_frags=1 gso(size=0 type=0 segs=0)) csum(0xa start=10 offset=0 ip_summed=3 complete_sw=0 valid=0 level=0) hash(0x0 sw=0 l4=0) proto=0x0800 pkttype=0 iif=0 priority=0x0 mark=0x0 alloc_cpu=10 vlan_all=0x0 encapsulation=0 inner(proto=0x0000, mac=0, net=0, trans=0) [ 67.877172] dev name=veth0_vlan feat=0x000061164fdd09e9 [ 67.877764] sk family=17 type=3 proto=0 [ 67.878279] skb linear: 00000000: 00 00 10 00 00 00 00 00 0f 00 00 00 08 00 [ 67.879128] skb frag: 00000000: 0e 00 07 00 00 00 28 00 08 80 1c 00 04 00 00 02 [ 67.879877] skb frag: 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.880647] skb frag: 00000020: 00 00 02 00 00 00 08 00 1b 00 00 00 00 00 00 00 [ 67.881156] skb frag: 00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.881753] skb frag: 00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.882173] skb frag: 00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.882790] skb frag: 00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.883171] skb frag: 00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.883733] skb frag: 00000080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.884206] skb frag: 00000090: 00 00 00 00 00 00 00 00 00 00 69 70 76 6c 61 6e [ 67.884704] skb frag: 000000a0: 31 00 00 00 00 00 00 00 00 00 2b 00 00 00 00 00 [ 67.885139] skb frag: 000000b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.885677] skb frag: 000000c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.886042] skb frag: 000000d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.886408] skb frag: 000000e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.887020] skb frag: 000000f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 67.887384] skb frag: 00000100: 00 00 [ 67.887878] ------------[ cut here ]------------ [ 67.887908] offset (-6) >= skb_headlen() (14) [ 67.888445] WARNING: CPU: 10 PID: 2088 at net/core/dev.c:3332 skb_checksum_help (net/core/dev.c:3332 (discriminator 2)) [ 67.889353] Modules linked in: macsec macvtap macvlan hsr wireguard curve25519_x86_64 libcurve25519_generic libchacha20poly1305 chacha_x86_64 libchacha poly1305_x86_64 dummy bridge sr_mod cdrom evdev pcspkr i2c_piix4 9pnet_virtio 9p 9pnet netfs [ 67.890111] CPU: 10 UID: 0 PID: 2088 Comm: b363492833 Not tainted 6.11.0-virtme #1011 [ 67.890183] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 67.890309] RIP: 0010:skb_checksum_help (net/core/dev.c:3332 (discriminator 2)) [ 67.891043] Call Trace: [ 67.891173] <TASK> [ 67.891274] ? __warn (kernel/panic.c:741) [ 67.891320] ? skb_checksum_help (net/core/dev.c:3332 (discriminator 2)) [ 67.891333] ? report_bug (lib/bug.c:180 lib/bug.c:219) [ 67.891348] ? handle_bug (arch/x86/kernel/traps.c:239) [ 67.891363] ? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1)) [ 67.891372] ? asm_exc_invalid_op (./arch/x86/include/asm/idtentry.h:621) [ 67.891388] ? skb_checksum_help (net/core/dev.c:3332 (discriminator 2)) [ 67.891399] ? skb_checksum_help (net/core/dev.c:3332 (discriminator 2)) [ 67.891416] ip_do_fragment (net/ipv4/ip_output.c:777 (discriminator 1)) [ 67.891448] ? __ip_local_out (./include/linux/skbuff.h:1146 ./include/net/l3mdev.h:196 ./include/net/l3mdev.h:213 ne ---truncated--- | |||||
CVE-2024-49948 | 1 Linux | 1 Linux Kernel | 2024-11-12 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: net: add more sanity checks to qdisc_pkt_len_init() One path takes care of SKB_GSO_DODGY, assuming skb->len is bigger than hdr_len. virtio_net_hdr_to_skb() does not fully dissect TCP headers, it only make sure it is at least 20 bytes. It is possible for an user to provide a malicious 'GSO' packet, total length of 80 bytes. - 20 bytes of IPv4 header - 60 bytes TCP header - a small gso_size like 8 virtio_net_hdr_to_skb() would declare this packet as a normal GSO packet, because it would see 40 bytes of payload, bigger than gso_size. We need to make detect this case to not underflow qdisc_skb_cb(skb)->pkt_len. | |||||
CVE-2024-49951 | 1 Linux | 1 Linux Kernel | 2024-11-12 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix possible crash on mgmt_index_removed If mgmt_index_removed is called while there are commands queued on cmd_sync it could lead to crashes like the bellow trace: 0x0000053D: __list_del_entry_valid_or_report+0x98/0xdc 0x0000053D: mgmt_pending_remove+0x18/0x58 [bluetooth] 0x0000053E: mgmt_remove_adv_monitor_complete+0x80/0x108 [bluetooth] 0x0000053E: hci_cmd_sync_work+0xbc/0x164 [bluetooth] So while handling mgmt_index_removed this attempts to dequeue commands passed as user_data to cmd_sync. | |||||
CVE-2024-49949 | 1 Linux | 1 Linux Kernel | 2024-11-12 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: net: avoid potential underflow in qdisc_pkt_len_init() with UFO After commit 7c6d2ecbda83 ("net: be more gentle about silly gso requests coming from user") virtio_net_hdr_to_skb() had sanity check to detect malicious attempts from user space to cook a bad GSO packet. Then commit cf9acc90c80ec ("net: virtio_net_hdr_to_skb: count transport header in UFO") while fixing one issue, allowed user space to cook a GSO packet with the following characteristic : IPv4 SKB_GSO_UDP, gso_size=3, skb->len = 28. When this packet arrives in qdisc_pkt_len_init(), we end up with hdr_len = 28 (IPv4 header + UDP header), matching skb->len Then the following sets gso_segs to 0 : gso_segs = DIV_ROUND_UP(skb->len - hdr_len, shinfo->gso_size); Then later we set qdisc_skb_cb(skb)->pkt_len to back to zero :/ qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; This leads to the following crash in fq_codel [1] qdisc_pkt_len_init() is best effort, we only want an estimation of the bytes sent on the wire, not crashing the kernel. This patch is fixing this particular issue, a following one adds more sanity checks for another potential bug. [1] [ 70.724101] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 70.724561] #PF: supervisor read access in kernel mode [ 70.724561] #PF: error_code(0x0000) - not-present page [ 70.724561] PGD 10ac61067 P4D 10ac61067 PUD 107ee2067 PMD 0 [ 70.724561] Oops: Oops: 0000 [#1] SMP NOPTI [ 70.724561] CPU: 11 UID: 0 PID: 2163 Comm: b358537762 Not tainted 6.11.0-virtme #991 [ 70.724561] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 70.724561] RIP: 0010:fq_codel_enqueue (net/sched/sch_fq_codel.c:120 net/sched/sch_fq_codel.c:168 net/sched/sch_fq_codel.c:230) sch_fq_codel [ 70.724561] Code: 24 08 49 c1 e1 06 44 89 7c 24 18 45 31 ed 45 31 c0 31 ff 89 44 24 14 4c 03 8b 90 01 00 00 eb 04 39 ca 73 37 4d 8b 39 83 c7 01 <49> 8b 17 49 89 11 41 8b 57 28 45 8b 5f 34 49 c7 07 00 00 00 00 49 All code ======== 0: 24 08 and $0x8,%al 2: 49 c1 e1 06 shl $0x6,%r9 6: 44 89 7c 24 18 mov %r15d,0x18(%rsp) b: 45 31 ed xor %r13d,%r13d e: 45 31 c0 xor %r8d,%r8d 11: 31 ff xor %edi,%edi 13: 89 44 24 14 mov %eax,0x14(%rsp) 17: 4c 03 8b 90 01 00 00 add 0x190(%rbx),%r9 1e: eb 04 jmp 0x24 20: 39 ca cmp %ecx,%edx 22: 73 37 jae 0x5b 24: 4d 8b 39 mov (%r9),%r15 27: 83 c7 01 add $0x1,%edi 2a:* 49 8b 17 mov (%r15),%rdx <-- trapping instruction 2d: 49 89 11 mov %rdx,(%r9) 30: 41 8b 57 28 mov 0x28(%r15),%edx 34: 45 8b 5f 34 mov 0x34(%r15),%r11d 38: 49 c7 07 00 00 00 00 movq $0x0,(%r15) 3f: 49 rex.WB Code starting with the faulting instruction =========================================== 0: 49 8b 17 mov (%r15),%rdx 3: 49 89 11 mov %rdx,(%r9) 6: 41 8b 57 28 mov 0x28(%r15),%edx a: 45 8b 5f 34 mov 0x34(%r15),%r11d e: 49 c7 07 00 00 00 00 movq $0x0,(%r15) 15: 49 rex.WB [ 70.724561] RSP: 0018:ffff95ae85e6fb90 EFLAGS: 00000202 [ 70.724561] RAX: 0000000002000000 RBX: ffff95ae841de000 RCX: 0000000000000000 [ 70.724561] RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000001 [ 70.724561] RBP: ffff95ae85e6fbf8 R08: 0000000000000000 R09: ffff95b710a30000 [ 70.724561] R10: 0000000000000000 R11: bdf289445ce31881 R12: ffff95ae85e6fc58 [ 70.724561] R13: 0000000000000000 R14: 0000000000000040 R15: 0000000000000000 [ 70.724561] FS: 000000002c5c1380(0000) GS:ffff95bd7fcc0000(0000) knlGS:0000000000000000 [ 70.724561] CS: 0010 DS: 0000 ES: 0000 C ---truncated--- | |||||
CVE-2024-50095 | 1 Linux | 1 Linux Kernel | 2024-11-12 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: RDMA/mad: Improve handling of timed out WRs of mad agent Current timeout handler of mad agent acquires/releases mad_agent_priv lock for every timed out WRs. This causes heavy locking contention when higher no. of WRs are to be handled inside timeout handler. This leads to softlockup with below trace in some use cases where rdma-cm path is used to establish connection between peer nodes Trace: ----- BUG: soft lockup - CPU#4 stuck for 26s! [kworker/u128:3:19767] CPU: 4 PID: 19767 Comm: kworker/u128:3 Kdump: loaded Tainted: G OE ------- --- 5.14.0-427.13.1.el9_4.x86_64 #1 Hardware name: Dell Inc. PowerEdge R740/01YM03, BIOS 2.4.8 11/26/2019 Workqueue: ib_mad1 timeout_sends [ib_core] RIP: 0010:__do_softirq+0x78/0x2ac RSP: 0018:ffffb253449e4f98 EFLAGS: 00000246 RAX: 00000000ffffffff RBX: 0000000000000000 RCX: 000000000000001f RDX: 000000000000001d RSI: 000000003d1879ab RDI: fff363b66fd3a86b RBP: ffffb253604cbcd8 R08: 0000009065635f3b R09: 0000000000000000 R10: 0000000000000040 R11: ffffb253449e4ff8 R12: 0000000000000000 R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000040 FS: 0000000000000000(0000) GS:ffff8caa1fc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fd9ec9db900 CR3: 0000000891934006 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> ? show_trace_log_lvl+0x1c4/0x2df ? show_trace_log_lvl+0x1c4/0x2df ? __irq_exit_rcu+0xa1/0xc0 ? watchdog_timer_fn+0x1b2/0x210 ? __pfx_watchdog_timer_fn+0x10/0x10 ? __hrtimer_run_queues+0x127/0x2c0 ? hrtimer_interrupt+0xfc/0x210 ? __sysvec_apic_timer_interrupt+0x5c/0x110 ? sysvec_apic_timer_interrupt+0x37/0x90 ? asm_sysvec_apic_timer_interrupt+0x16/0x20 ? __do_softirq+0x78/0x2ac ? __do_softirq+0x60/0x2ac __irq_exit_rcu+0xa1/0xc0 sysvec_call_function_single+0x72/0x90 </IRQ> <TASK> asm_sysvec_call_function_single+0x16/0x20 RIP: 0010:_raw_spin_unlock_irq+0x14/0x30 RSP: 0018:ffffb253604cbd88 EFLAGS: 00000247 RAX: 000000000001960d RBX: 0000000000000002 RCX: ffff8cad2a064800 RDX: 000000008020001b RSI: 0000000000000001 RDI: ffff8cad5d39f66c RBP: ffff8cad5d39f600 R08: 0000000000000001 R09: 0000000000000000 R10: ffff8caa443e0c00 R11: ffffb253604cbcd8 R12: ffff8cacb8682538 R13: 0000000000000005 R14: ffffb253604cbd90 R15: ffff8cad5d39f66c cm_process_send_error+0x122/0x1d0 [ib_cm] timeout_sends+0x1dd/0x270 [ib_core] process_one_work+0x1e2/0x3b0 ? __pfx_worker_thread+0x10/0x10 worker_thread+0x50/0x3a0 ? __pfx_worker_thread+0x10/0x10 kthread+0xdd/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x50 </TASK> Simplified timeout handler by creating local list of timed out WRs and invoke send handler post creating the list. The new method acquires/ releases lock once to fetch the list and hence helps to reduce locking contetiong when processing higher no. of WRs | |||||
CVE-2024-50099 | 1 Linux | 1 Linux Kernel | 2024-11-12 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: arm64: probes: Remove broken LDR (literal) uprobe support The simulate_ldr_literal() and simulate_ldrsw_literal() functions are unsafe to use for uprobes. Both functions were originally written for use with kprobes, and access memory with plain C accesses. When uprobes was added, these were reused unmodified even though they cannot safely access user memory. There are three key problems: 1) The plain C accesses do not have corresponding extable entries, and thus if they encounter a fault the kernel will treat these as unintentional accesses to user memory, resulting in a BUG() which will kill the kernel thread, and likely lead to further issues (e.g. lockup or panic()). 2) The plain C accesses are subject to HW PAN and SW PAN, and so when either is in use, any attempt to simulate an access to user memory will fault. Thus neither simulate_ldr_literal() nor simulate_ldrsw_literal() can do anything useful when simulating a user instruction on any system with HW PAN or SW PAN. 3) The plain C accesses are privileged, as they run in kernel context, and in practice can access a small range of kernel virtual addresses. The instructions they simulate have a range of +/-1MiB, and since the simulated instructions must itself be a user instructions in the TTBR0 address range, these can address the final 1MiB of the TTBR1 acddress range by wrapping downwards from an address in the first 1MiB of the TTBR0 address range. In contemporary kernels the last 8MiB of TTBR1 address range is reserved, and accesses to this will always fault, meaning this is no worse than (1). Historically, it was theoretically possible for the linear map or vmemmap to spill into the final 8MiB of the TTBR1 address range, but in practice this is extremely unlikely to occur as this would require either: * Having enough physical memory to fill the entire linear map all the way to the final 1MiB of the TTBR1 address range. * Getting unlucky with KASLR randomization of the linear map such that the populated region happens to overlap with the last 1MiB of the TTBR address range. ... and in either case if we were to spill into the final page there would be larger problems as the final page would alias with error pointers. Practically speaking, (1) and (2) are the big issues. Given there have been no reports of problems since the broken code was introduced, it appears that no-one is relying on probing these instructions with uprobes. Avoid these issues by not allowing uprobes on LDR (literal) and LDRSW (literal), limiting the use of simulate_ldr_literal() and simulate_ldrsw_literal() to kprobes. Attempts to place uprobes on LDR (literal) and LDRSW (literal) will be rejected as arm_probe_decode_insn() will return INSN_REJECTED. In future we can consider introducing working uprobes support for these instructions, but this will require more significant work. | |||||
CVE-2024-50098 | 1 Linux | 1 Linux Kernel | 2024-11-12 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Set SDEV_OFFLINE when UFS is shut down There is a history of deadlock if reboot is performed at the beginning of booting. SDEV_QUIESCE was set for all LU's scsi_devices by UFS shutdown, and at that time the audio driver was waiting on blk_mq_submit_bio() holding a mutex_lock while reading the fw binary. After that, a deadlock issue occurred while audio driver shutdown was waiting for mutex_unlock of blk_mq_submit_bio(). To solve this, set SDEV_OFFLINE for all LUs except WLUN, so that any I/O that comes down after a UFS shutdown will return an error. [ 31.907781]I[0: swapper/0: 0] 1 130705007 1651079834 11289729804 0 D( 2) 3 ffffff882e208000 * init [device_shutdown] [ 31.907793]I[0: swapper/0: 0] Mutex: 0xffffff8849a2b8b0: owner[0xffffff882e28cb00 kworker/6:0 :49] [ 31.907806]I[0: swapper/0: 0] Call trace: [ 31.907810]I[0: swapper/0: 0] __switch_to+0x174/0x338 [ 31.907819]I[0: swapper/0: 0] __schedule+0x5ec/0x9cc [ 31.907826]I[0: swapper/0: 0] schedule+0x7c/0xe8 [ 31.907834]I[0: swapper/0: 0] schedule_preempt_disabled+0x24/0x40 [ 31.907842]I[0: swapper/0: 0] __mutex_lock+0x408/0xdac [ 31.907849]I[0: swapper/0: 0] __mutex_lock_slowpath+0x14/0x24 [ 31.907858]I[0: swapper/0: 0] mutex_lock+0x40/0xec [ 31.907866]I[0: swapper/0: 0] device_shutdown+0x108/0x280 [ 31.907875]I[0: swapper/0: 0] kernel_restart+0x4c/0x11c [ 31.907883]I[0: swapper/0: 0] __arm64_sys_reboot+0x15c/0x280 [ 31.907890]I[0: swapper/0: 0] invoke_syscall+0x70/0x158 [ 31.907899]I[0: swapper/0: 0] el0_svc_common+0xb4/0xf4 [ 31.907909]I[0: swapper/0: 0] do_el0_svc+0x2c/0xb0 [ 31.907918]I[0: swapper/0: 0] el0_svc+0x34/0xe0 [ 31.907928]I[0: swapper/0: 0] el0t_64_sync_handler+0x68/0xb4 [ 31.907937]I[0: swapper/0: 0] el0t_64_sync+0x1a0/0x1a4 [ 31.908774]I[0: swapper/0: 0] 49 0 11960702 11236868007 0 D( 2) 6 ffffff882e28cb00 * kworker/6:0 [__bio_queue_enter] [ 31.908783]I[0: swapper/0: 0] Call trace: [ 31.908788]I[0: swapper/0: 0] __switch_to+0x174/0x338 [ 31.908796]I[0: swapper/0: 0] __schedule+0x5ec/0x9cc [ 31.908803]I[0: swapper/0: 0] schedule+0x7c/0xe8 [ 31.908811]I[0: swapper/0: 0] __bio_queue_enter+0xb8/0x178 [ 31.908818]I[0: swapper/0: 0] blk_mq_submit_bio+0x194/0x67c [ 31.908827]I[0: swapper/0: 0] __submit_bio+0xb8/0x19c |