Total
7696 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2022-48790 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 7.0 HIGH |
In the Linux kernel, the following vulnerability has been resolved: nvme: fix a possible use-after-free in controller reset during load Unlike .queue_rq, in .submit_async_event drivers may not check the ctrl readiness for AER submission. This may lead to a use-after-free condition that was observed with nvme-tcp. The race condition may happen in the following scenario: 1. driver executes its reset_ctrl_work 2. -> nvme_stop_ctrl - flushes ctrl async_event_work 3. ctrl sends AEN which is received by the host, which in turn schedules AEN handling 4. teardown admin queue (which releases the queue socket) 5. AEN processed, submits another AER, calling the driver to submit 6. driver attempts to send the cmd ==> use-after-free In order to fix that, add ctrl state check to validate the ctrl is actually able to accept the AER submission. This addresses the above race in controller resets because the driver during teardown should: 1. change ctrl state to RESETTING 2. flush async_event_work (as well as other async work elements) So after 1,2, any other AER command will find the ctrl state to be RESETTING and bail out without submitting the AER. | |||||
CVE-2022-48789 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: nvme-tcp: fix possible use-after-free in transport error_recovery work While nvme_tcp_submit_async_event_work is checking the ctrl and queue state before preparing the AER command and scheduling io_work, in order to fully prevent a race where this check is not reliable the error recovery work must flush async_event_work before continuing to destroy the admin queue after setting the ctrl state to RESETTING such that there is no race .submit_async_event and the error recovery handler itself changing the ctrl state. | |||||
CVE-2022-48788 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: nvme-rdma: fix possible use-after-free in transport error_recovery work While nvme_rdma_submit_async_event_work is checking the ctrl and queue state before preparing the AER command and scheduling io_work, in order to fully prevent a race where this check is not reliable the error recovery work must flush async_event_work before continuing to destroy the admin queue after setting the ctrl state to RESETTING such that there is no race .submit_async_event and the error recovery handler itself changing the ctrl state. | |||||
CVE-2022-48787 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: iwlwifi: fix use-after-free If no firmware was present at all (or, presumably, all of the firmware files failed to parse), we end up unbinding by calling device_release_driver(), which calls remove(), which then in iwlwifi calls iwl_drv_stop(), freeing the 'drv' struct. However the new code I added will still erroneously access it after it was freed. Set 'failure=false' in this case to avoid the access, all data was already freed anyway. | |||||
CVE-2022-48783 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: net: dsa: lantiq_gswip: fix use after free in gswip_remove() of_node_put(priv->ds->slave_mii_bus->dev.of_node) should be done before mdiobus_free(priv->ds->slave_mii_bus). | |||||
CVE-2022-48782 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: mctp: fix use after free Clang static analysis reports this problem route.c:425:4: warning: Use of memory after it is freed trace_mctp_key_acquire(key); ^~~~~~~~~~~~~~~~~~~~~~~~~~~ When mctp_key_add() fails, key is freed but then is later used in trace_mctp_key_acquire(). Add an else statement to use the key only when mctp_key_add() is successful. | |||||
CVE-2022-48781 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: crypto: af_alg - get rid of alg_memory_allocated alg_memory_allocated does not seem to be really used. alg_proto does have a .memory_allocated field, but no corresponding .sysctl_mem. This means sk_has_account() returns true, but all sk_prot_mem_limits() users will trigger a NULL dereference [1]. THis was not a problem until SO_RESERVE_MEM addition. general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 1 PID: 3591 Comm: syz-executor153 Not tainted 5.17.0-rc3-syzkaller-00316-gb81b1829e7e3 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:sk_prot_mem_limits include/net/sock.h:1523 [inline] RIP: 0010:sock_reserve_memory+0x1d7/0x330 net/core/sock.c:1000 Code: 08 00 74 08 48 89 ef e8 27 20 bb f9 4c 03 7c 24 10 48 8b 6d 00 48 83 c5 08 48 89 e8 48 c1 e8 03 48 b9 00 00 00 00 00 fc ff df <80> 3c 08 00 74 08 48 89 ef e8 fb 1f bb f9 48 8b 6d 00 4c 89 ff 48 RSP: 0018:ffffc90001f1fb68 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88814aabc000 RCX: dffffc0000000000 RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffff90e18120 RBP: 0000000000000008 R08: dffffc0000000000 R09: fffffbfff21c3025 R10: fffffbfff21c3025 R11: 0000000000000000 R12: ffffffff8d109840 R13: 0000000000001002 R14: 0000000000000001 R15: 0000000000000001 FS: 0000555556e08300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fc74416f130 CR3: 0000000073d9e000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> sock_setsockopt+0x14a9/0x3a30 net/core/sock.c:1446 __sys_setsockopt+0x5af/0x980 net/socket.c:2176 __do_sys_setsockopt net/socket.c:2191 [inline] __se_sys_setsockopt net/socket.c:2188 [inline] __x64_sys_setsockopt+0xb1/0xc0 net/socket.c:2188 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae RIP: 0033:0x7fc7440fddc9 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007ffe98f07968 EFLAGS: 00000246 ORIG_RAX: 0000000000000036 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fc7440fddc9 RDX: 0000000000000049 RSI: 0000000000000001 RDI: 0000000000000004 RBP: 0000000000000000 R08: 0000000000000004 R09: 00007ffe98f07990 R10: 0000000020000000 R11: 0000000000000246 R12: 00007ffe98f0798c R13: 00007ffe98f079a0 R14: 00007ffe98f079e0 R15: 0000000000000000 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:sk_prot_mem_limits include/net/sock.h:1523 [inline] RIP: 0010:sock_reserve_memory+0x1d7/0x330 net/core/sock.c:1000 Code: 08 00 74 08 48 89 ef e8 27 20 bb f9 4c 03 7c 24 10 48 8b 6d 00 48 83 c5 08 48 89 e8 48 c1 e8 03 48 b9 00 00 00 00 00 fc ff df <80> 3c 08 00 74 08 48 89 ef e8 fb 1f bb f9 48 8b 6d 00 4c 89 ff 48 RSP: 0018:ffffc90001f1fb68 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88814aabc000 RCX: dffffc0000000000 RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffff90e18120 RBP: 0000000000000008 R08: dffffc0000000000 R09: fffffbfff21c3025 R10: fffffbfff21c3025 R11: 0000000000000000 R12: ffffffff8d109840 R13: 0000000000001002 R14: 0000000000000001 R15: 0000000000000001 FS: 0000555556e08300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fc74416f130 CR3: 0000000073d9e000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 | |||||
CVE-2022-48779 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: net: mscc: ocelot: fix use-after-free in ocelot_vlan_del() ocelot_vlan_member_del() will free the struct ocelot_bridge_vlan, so if this is the same as the port's pvid_vlan which we access afterwards, what we're accessing is freed memory. Fix the bug by determining whether to clear ocelot_port->pvid_vlan prior to calling ocelot_vlan_member_del(). | |||||
CVE-2022-48778 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: mtd: rawnand: gpmi: don't leak PM reference in error path If gpmi_nfc_apply_timings() fails, the PM runtime usage counter must be dropped. | |||||
CVE-2022-48777 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: mtd: parsers: qcom: Fix kernel panic on skipped partition In the event of a skipped partition (case when the entry name is empty) the kernel panics in the cleanup function as the name entry is NULL. Rework the parser logic by first checking the real partition number and then allocate the space and set the data for the valid partitions. The logic was also fundamentally wrong as with a skipped partition, the parts number returned was incorrect by not decreasing it for the skipped partitions. | |||||
CVE-2022-48775 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: Drivers: hv: vmbus: Fix memory leak in vmbus_add_channel_kobj kobject_init_and_add() takes reference even when it fails. According to the doc of kobject_init_and_add(): If this function returns an error, kobject_put() must be called to properly clean up the memory associated with the object. Fix memory leak by calling kobject_put(). | |||||
CVE-2022-48773 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: xprtrdma: fix pointer derefs in error cases of rpcrdma_ep_create If there are failures then we must not leave the non-NULL pointers with the error value, otherwise `rpcrdma_ep_destroy` gets confused and tries free them, resulting in an Oops. | |||||
CVE-2022-48772 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: media: lgdt3306a: Add a check against null-pointer-def The driver should check whether the client provides the platform_data. The following log reveals it: [ 29.610324] BUG: KASAN: null-ptr-deref in kmemdup+0x30/0x40 [ 29.610730] Read of size 40 at addr 0000000000000000 by task bash/414 [ 29.612820] Call Trace: [ 29.613030] <TASK> [ 29.613201] dump_stack_lvl+0x56/0x6f [ 29.613496] ? kmemdup+0x30/0x40 [ 29.613754] print_report.cold+0x494/0x6b7 [ 29.614082] ? kmemdup+0x30/0x40 [ 29.614340] kasan_report+0x8a/0x190 [ 29.614628] ? kmemdup+0x30/0x40 [ 29.614888] kasan_check_range+0x14d/0x1d0 [ 29.615213] memcpy+0x20/0x60 [ 29.615454] kmemdup+0x30/0x40 [ 29.615700] lgdt3306a_probe+0x52/0x310 [ 29.616339] i2c_device_probe+0x951/0xa90 | |||||
CVE-2022-48768 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: tracing/histogram: Fix a potential memory leak for kstrdup() kfree() is missing on an error path to free the memory allocated by kstrdup(): p = param = kstrdup(data->params[i], GFP_KERNEL); So it is better to free it via kfree(p). | |||||
CVE-2022-48756 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dsi: invalid parameter check in msm_dsi_phy_enable The function performs a check on the "phy" input parameter, however, it is used before the check. Initialize the "dev" variable after the sanity check to avoid a possible NULL pointer dereference. Addresses-Coverity-ID: 1493860 ("Null pointer dereference") | |||||
CVE-2022-48753 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: block: fix memory leak in disk_register_independent_access_ranges kobject_init_and_add() takes reference even when it fails. According to the doc of kobject_init_and_add() If this function returns an error, kobject_put() must be called to properly clean up the memory associated with the object. Fix this issue by adding kobject_put(). Callback function blk_ia_ranges_sysfs_release() in kobject_put() can handle the pointer "iars" properly. | |||||
CVE-2022-48750 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: hwmon: (nct6775) Fix crash in clear_caseopen Paweł Marciniak reports the following crash, observed when clearing the chassis intrusion alarm. BUG: kernel NULL pointer dereference, address: 0000000000000028 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 3 PID: 4815 Comm: bash Tainted: G S 5.16.2-200.fc35.x86_64 #1 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./Z97 Extreme4, BIOS P2.60A 05/03/2018 RIP: 0010:clear_caseopen+0x5a/0x120 [nct6775] Code: 68 70 e8 e9 32 b1 e3 85 c0 0f 85 d2 00 00 00 48 83 7c 24 ... RSP: 0018:ffffabcb02803dd8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000 RDX: ffff8e8808192880 RSI: 0000000000000000 RDI: ffff8e87c7509a68 RBP: 0000000000000000 R08: 0000000000000001 R09: 000000000000000a R10: 000000000000000a R11: f000000000000000 R12: 000000000000001f R13: ffff8e87c7509828 R14: ffff8e87c7509a68 R15: ffff8e88494527a0 FS: 00007f4db9151740(0000) GS:ffff8e8ebfec0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000028 CR3: 0000000166b66001 CR4: 00000000001706e0 Call Trace: <TASK> kernfs_fop_write_iter+0x11c/0x1b0 new_sync_write+0x10b/0x180 vfs_write+0x209/0x2a0 ksys_write+0x4f/0xc0 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae The problem is that the device passed to clear_caseopen() is the hwmon device, not the platform device, and the platform data is not set in the hwmon device. Store the pointer to sio_data in struct nct6775_data and get if from there if needed. | |||||
CVE-2022-48749 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: invalid parameter check in dpu_setup_dspp_pcc The function performs a check on the "ctx" input parameter, however, it is used before the check. Initialize the "base" variable after the sanity check to avoid a possible NULL pointer dereference. Addresses-Coverity-ID: 1493866 ("Null pointer dereference") | |||||
CVE-2022-48743 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 5.5 MEDIUM |
In the Linux kernel, the following vulnerability has been resolved: net: amd-xgbe: Fix skb data length underflow There will be BUG_ON() triggered in include/linux/skbuff.h leading to intermittent kernel panic, when the skb length underflow is detected. Fix this by dropping the packet if such length underflows are seen because of inconsistencies in the hardware descriptors. | |||||
CVE-2022-48742 | 1 Linux | 1 Linux Kernel | 2024-11-21 | N/A | 7.8 HIGH |
In the Linux kernel, the following vulnerability has been resolved: rtnetlink: make sure to refresh master_dev/m_ops in __rtnl_newlink() While looking at one unrelated syzbot bug, I found the replay logic in __rtnl_newlink() to potentially trigger use-after-free. It is better to clear master_dev and m_ops inside the loop, in case we have to replay it. |