Vulnerabilities (CVE)

Filtered by vendor Linux Subscribe
Filtered by product Linux Kernel
Total 7763 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2022-48891 1 Linux 1 Linux Kernel 2024-09-06 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: regulator: da9211: Use irq handler when ready If the system does not come from reset (like when it is kexec()), the regulator might have an IRQ waiting for us. If we enable the IRQ handler before its structures are ready, we crash. This patch fixes: [ 1.141839] Unable to handle kernel read from unreadable memory at virtual address 0000000000000078 [ 1.316096] Call trace: [ 1.316101] blocking_notifier_call_chain+0x20/0xa8 [ 1.322757] cpu cpu0: dummy supplies not allowed for exclusive requests [ 1.327823] regulator_notifier_call_chain+0x1c/0x2c [ 1.327825] da9211_irq_handler+0x68/0xf8 [ 1.327829] irq_thread+0x11c/0x234 [ 1.327833] kthread+0x13c/0x154
CVE-2022-48890 1 Linux 1 Linux Kernel 2024-09-06 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: scsi: storvsc: Fix swiotlb bounce buffer leak in confidential VM storvsc_queuecommand() maps the scatter/gather list using scsi_dma_map(), which in a confidential VM allocates swiotlb bounce buffers. If the I/O submission fails in storvsc_do_io(), the I/O is typically retried by higher level code, but the bounce buffer memory is never freed. The mostly like cause of I/O submission failure is a full VMBus channel ring buffer, which is not uncommon under high I/O loads. Eventually enough bounce buffer memory leaks that the confidential VM can't do any I/O. The same problem can arise in a non-confidential VM with kernel boot parameter swiotlb=force. Fix this by doing scsi_dma_unmap() in the case of an I/O submission error, which frees the bounce buffer memory.
CVE-2022-48889 1 Linux 1 Linux Kernel 2024-09-06 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: sof-nau8825: fix module alias overflow The maximum name length for a platform_device_id entry is 20 characters including the trailing NUL byte. The sof_nau8825.c file exceeds that, which causes an obscure error message: sound/soc/intel/boards/snd-soc-sof_nau8825.mod.c:35:45: error: illegal character encoding in string literal [-Werror,-Winvalid-source-encoding] MODULE_ALIAS("platform:adl_max98373_nau8825<U+0018><AA>"); ^~~~ include/linux/module.h:168:49: note: expanded from macro 'MODULE_ALIAS' ^~~~~~ include/linux/module.h:165:56: note: expanded from macro 'MODULE_INFO' ^~~~ include/linux/moduleparam.h:26:47: note: expanded from macro '__MODULE_INFO' = __MODULE_INFO_PREFIX __stringify(tag) "=" info I could not figure out how to make the module handling robust enough to handle this better, but as a quick fix, using slightly shorter names that are still unique avoids the build issue.
CVE-2022-48887 1 Linux 1 Linux Kernel 2024-09-06 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Remove rcu locks from user resources User resource lookups used rcu to avoid two extra atomics. Unfortunately the rcu paths were buggy and it was easy to make the driver crash by submitting command buffers from two different threads. Because the lookups never show up in performance profiles replace them with a regular spin lock which fixes the races in accesses to those shared resources. Fixes kernel oops'es in IGT's vmwgfx execution_buffer stress test and seen crashes with apps using shared resources.
CVE-2022-48886 1 Linux 1 Linux Kernel 2024-09-06 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ice: Add check for kzalloc Add the check for the return value of kzalloc in order to avoid NULL pointer dereference. Moreover, use the goto-label to share the clean code.
CVE-2022-48885 1 Linux 1 Linux Kernel 2024-09-06 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: ice: Fix potential memory leak in ice_gnss_tty_write() The ice_gnss_tty_write() return directly if the write_buf alloc failed, leaking the cmd_buf. Fix by free cmd_buf if write_buf alloc failed.
CVE-2022-48873 1 Linux 1 Linux Kernel 2024-09-06 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: misc: fastrpc: Don't remove map on creater_process and device_release Do not remove the map from the list on error path in fastrpc_init_create_process, instead call fastrpc_map_put, to avoid use-after-free. Do not remove it on fastrpc_device_release either, call fastrpc_map_put instead. The fastrpc_free_map is the only proper place to remove the map. This is called only after the reference count is 0.
CVE-2022-48872 1 Linux 1 Linux Kernel 2024-09-06 N/A 7.0 HIGH
In the Linux kernel, the following vulnerability has been resolved: misc: fastrpc: Fix use-after-free race condition for maps It is possible that in between calling fastrpc_map_get() until map->fl->lock is taken in fastrpc_free_map(), another thread can call fastrpc_map_lookup() and get a reference to a map that is about to be deleted. Rewrite fastrpc_map_get() to only increase the reference count of a map if it's non-zero. Propagate this to callers so they can know if a map is about to be deleted. Fixes this warning: refcount_t: addition on 0; use-after-free. WARNING: CPU: 5 PID: 10100 at lib/refcount.c:25 refcount_warn_saturate ... Call trace: refcount_warn_saturate [fastrpc_map_get inlined] [fastrpc_map_lookup inlined] fastrpc_map_create fastrpc_internal_invoke fastrpc_device_ioctl __arm64_sys_ioctl invoke_syscall
CVE-2022-48871 1 Linux 1 Linux Kernel 2024-09-06 N/A 7.1 HIGH
In the Linux kernel, the following vulnerability has been resolved: tty: serial: qcom-geni-serial: fix slab-out-of-bounds on RX FIFO buffer Driver's probe allocates memory for RX FIFO (port->rx_fifo) based on default RX FIFO depth, e.g. 16. Later during serial startup the qcom_geni_serial_port_setup() updates the RX FIFO depth (port->rx_fifo_depth) to match real device capabilities, e.g. to 32. The RX UART handle code will read "port->rx_fifo_depth" number of words into "port->rx_fifo" buffer, thus exceeding the bounds. This can be observed in certain configurations with Qualcomm Bluetooth HCI UART device and KASAN: Bluetooth: hci0: QCA Product ID :0x00000010 Bluetooth: hci0: QCA SOC Version :0x400a0200 Bluetooth: hci0: QCA ROM Version :0x00000200 Bluetooth: hci0: QCA Patch Version:0x00000d2b Bluetooth: hci0: QCA controller version 0x02000200 Bluetooth: hci0: QCA Downloading qca/htbtfw20.tlv bluetooth hci0: Direct firmware load for qca/htbtfw20.tlv failed with error -2 Bluetooth: hci0: QCA Failed to request file: qca/htbtfw20.tlv (-2) Bluetooth: hci0: QCA Failed to download patch (-2) ================================================================== BUG: KASAN: slab-out-of-bounds in handle_rx_uart+0xa8/0x18c Write of size 4 at addr ffff279347d578c0 by task swapper/0/0 CPU: 0 PID: 0 Comm: swapper/0 Not tainted 6.1.0-rt5-00350-gb2450b7e00be-dirty #26 Hardware name: Qualcomm Technologies, Inc. Robotics RB5 (DT) Call trace: dump_backtrace.part.0+0xe0/0xf0 show_stack+0x18/0x40 dump_stack_lvl+0x8c/0xb8 print_report+0x188/0x488 kasan_report+0xb4/0x100 __asan_store4+0x80/0xa4 handle_rx_uart+0xa8/0x18c qcom_geni_serial_handle_rx+0x84/0x9c qcom_geni_serial_isr+0x24c/0x760 __handle_irq_event_percpu+0x108/0x500 handle_irq_event+0x6c/0x110 handle_fasteoi_irq+0x138/0x2cc generic_handle_domain_irq+0x48/0x64 If the RX FIFO depth changes after probe, be sure to resize the buffer.
CVE-2022-48870 1 Linux 1 Linux Kernel 2024-09-06 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: tty: fix possible null-ptr-defer in spk_ttyio_release Run the following tests on the qemu platform: syzkaller:~# modprobe speakup_audptr input: Speakup as /devices/virtual/input/input4 initialized device: /dev/synth, node (MAJOR 10, MINOR 125) speakup 3.1.6: initialized synth name on entry is: (null) synth probe spk_ttyio_initialise_ldisc failed because tty_kopen_exclusive returned failed (errno -16), then remove the module, we will get a null-ptr-defer problem, as follow: syzkaller:~# modprobe -r speakup_audptr releasing synth audptr BUG: kernel NULL pointer dereference, address: 0000000000000080 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 0 P4D 0 Oops: 0002 [#1] PREEMPT SMP PTI CPU: 2 PID: 204 Comm: modprobe Not tainted 6.1.0-rc6-dirty #1 RIP: 0010:mutex_lock+0x14/0x30 Call Trace: <TASK> spk_ttyio_release+0x19/0x70 [speakup] synth_release.part.6+0xac/0xc0 [speakup] synth_remove+0x56/0x60 [speakup] __x64_sys_delete_module+0x156/0x250 ? fpregs_assert_state_consistent+0x1d/0x50 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> Modules linked in: speakup_audptr(-) speakup Dumping ftrace buffer: in_synth->dev was not initialized during modprobe, so we add check for in_synth->dev to fix this bug.
CVE-2022-48869 1 Linux 1 Linux Kernel 2024-09-06 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: USB: gadgetfs: Fix race between mounting and unmounting The syzbot fuzzer and Gerald Lee have identified a use-after-free bug in the gadgetfs driver, involving processes concurrently mounting and unmounting the gadgetfs filesystem. In particular, gadgetfs_fill_super() can race with gadgetfs_kill_sb(), causing the latter to deallocate the_device while the former is using it. The output from KASAN says, in part: BUG: KASAN: use-after-free in instrument_atomic_read_write include/linux/instrumented.h:102 [inline] BUG: KASAN: use-after-free in atomic_fetch_sub_release include/linux/atomic/atomic-instrumented.h:176 [inline] BUG: KASAN: use-after-free in __refcount_sub_and_test include/linux/refcount.h:272 [inline] BUG: KASAN: use-after-free in __refcount_dec_and_test include/linux/refcount.h:315 [inline] BUG: KASAN: use-after-free in refcount_dec_and_test include/linux/refcount.h:333 [inline] BUG: KASAN: use-after-free in put_dev drivers/usb/gadget/legacy/inode.c:159 [inline] BUG: KASAN: use-after-free in gadgetfs_kill_sb+0x33/0x100 drivers/usb/gadget/legacy/inode.c:2086 Write of size 4 at addr ffff8880276d7840 by task syz-executor126/18689 CPU: 0 PID: 18689 Comm: syz-executor126 Not tainted 6.1.0-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/26/2022 Call Trace: <TASK> ... atomic_fetch_sub_release include/linux/atomic/atomic-instrumented.h:176 [inline] __refcount_sub_and_test include/linux/refcount.h:272 [inline] __refcount_dec_and_test include/linux/refcount.h:315 [inline] refcount_dec_and_test include/linux/refcount.h:333 [inline] put_dev drivers/usb/gadget/legacy/inode.c:159 [inline] gadgetfs_kill_sb+0x33/0x100 drivers/usb/gadget/legacy/inode.c:2086 deactivate_locked_super+0xa7/0xf0 fs/super.c:332 vfs_get_super fs/super.c:1190 [inline] get_tree_single+0xd0/0x160 fs/super.c:1207 vfs_get_tree+0x88/0x270 fs/super.c:1531 vfs_fsconfig_locked fs/fsopen.c:232 [inline] The simplest solution is to ensure that gadgetfs_fill_super() and gadgetfs_kill_sb() are serialized by making them both acquire a new mutex.
CVE-2022-48867 1 Linux 1 Linux Kernel 2024-09-06 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: dmaengine: idxd: Prevent use after free on completion memory On driver unload any pending descriptors are flushed at the time the interrupt is freed: idxd_dmaengine_drv_remove() -> drv_disable_wq() -> idxd_wq_free_irq() -> idxd_flush_pending_descs(). If there are any descriptors present that need to be flushed this flow triggers a "not present" page fault as below: BUG: unable to handle page fault for address: ff391c97c70c9040 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page The address that triggers the fault is the address of the descriptor that was freed moments earlier via: drv_disable_wq()->idxd_wq_free_resources() Fix the use after free by freeing the descriptors after any possible usage. This is done after idxd_wq_reset() to ensure that the memory remains accessible during possible completion writes by the device.
CVE-2024-42257 1 Linux 1 Linux Kernel 2024-09-06 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: ext4: use memtostr_pad() for s_volume_name As with the other strings in struct ext4_super_block, s_volume_name is not NUL terminated. The other strings were marked in commit 072ebb3bffe6 ("ext4: add nonstring annotations to ext4.h"). Using strscpy() isn't the right replacement for strncpy(); it should use memtostr_pad() instead.
CVE-2024-42256 1 Linux 1 Linux Kernel 2024-09-06 N/A 9.8 CRITICAL
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix server re-repick on subrequest retry When a subrequest is marked for needing retry, netfs will call cifs_prepare_write() which will make cifs repick the server for the op before renegotiating credits; it then calls cifs_issue_write() which invokes smb2_async_writev() - which re-repicks the server. If a different server is then selected, this causes the increment of server->in_flight to happen against one record and the decrement to happen against another, leading to misaccounting. Fix this by just removing the repick code in smb2_async_writev(). As this is only called from netfslib-driven code, cifs_prepare_write() should always have been called first, and so server should never be NULL and the preparatory step is repeated in the event that we do a retry. The problem manifests as a warning looking something like: WARNING: CPU: 4 PID: 72896 at fs/smb/client/smb2ops.c:97 smb2_add_credits+0x3f0/0x9e0 [cifs] ... RIP: 0010:smb2_add_credits+0x3f0/0x9e0 [cifs] ... smb2_writev_callback+0x334/0x560 [cifs] cifs_demultiplex_thread+0x77a/0x11b0 [cifs] kthread+0x187/0x1d0 ret_from_fork+0x34/0x60 ret_from_fork_asm+0x1a/0x30 Which may be triggered by a number of different xfstests running against an Azure server in multichannel mode. generic/249 seems the most repeatable, but generic/215, generic/249 and generic/308 may also show it.
CVE-2024-42255 1 Linux 1 Linux Kernel 2024-09-06 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: tpm: Use auth only after NULL check in tpm_buf_check_hmac_response() Dereference auth after NULL check in tpm_buf_check_hmac_response(). Otherwise, unless tpm2_sessions_init() was called, a call can cause NULL dereference, when TCG_TPM2_HMAC is enabled. [jarkko: adjusted the commit message.]
CVE-2024-42254 1 Linux 1 Linux Kernel 2024-09-06 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: io_uring: fix error pbuf checking Syz reports a problem, which boils down to NULL vs IS_ERR inconsistent error handling in io_alloc_pbuf_ring(). KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] RIP: 0010:__io_remove_buffers+0xac/0x700 io_uring/kbuf.c:341 Call Trace: <TASK> io_put_bl io_uring/kbuf.c:378 [inline] io_destroy_buffers+0x14e/0x490 io_uring/kbuf.c:392 io_ring_ctx_free+0xa00/0x1070 io_uring/io_uring.c:2613 io_ring_exit_work+0x80f/0x8a0 io_uring/io_uring.c:2844 process_one_work kernel/workqueue.c:3231 [inline] process_scheduled_works+0xa2c/0x1830 kernel/workqueue.c:3312 worker_thread+0x86d/0xd40 kernel/workqueue.c:3390 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
CVE-2024-42253 1 Linux 1 Linux Kernel 2024-09-06 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: gpio: pca953x: fix pca953x_irq_bus_sync_unlock race Ensure that `i2c_lock' is held when setting interrupt latch and mask in pca953x_irq_bus_sync_unlock() in order to avoid races. The other (non-probe) call site pca953x_gpio_set_multiple() ensures the lock is held before calling pca953x_write_regs(). The problem occurred when a request raced against irq_bus_sync_unlock() approximately once per thousand reboots on an i.MX8MP based system. * Normal case 0-0022: write register AI|3a {03,02,00,00,01} Input latch P0 0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0 0-0022: write register AI|08 {ff,00,00,00,00} Output P3 0-0022: write register AI|12 {fc,00,00,00,00} Config P3 * Race case 0-0022: write register AI|08 {ff,00,00,00,00} Output P3 0-0022: write register AI|08 {03,02,00,00,01} *** Wrong register *** 0-0022: write register AI|12 {fc,00,00,00,00} Config P3 0-0022: write register AI|49 {fc,fd,ff,ff,fe} Interrupt mask P0
CVE-2024-42252 1 Linux 1 Linux Kernel 2024-09-06 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: closures: Change BUG_ON() to WARN_ON() If a BUG_ON() can be hit in the wild, it shouldn't be a BUG_ON() For reference, this has popped up once in the CI, and we'll need more info to debug it: 03240 ------------[ cut here ]------------ 03240 kernel BUG at lib/closure.c:21! 03240 kernel BUG at lib/closure.c:21! 03240 Internal error: Oops - BUG: 00000000f2000800 [#1] SMP 03240 Modules linked in: 03240 CPU: 15 PID: 40534 Comm: kworker/u80:1 Not tainted 6.10.0-rc4-ktest-ga56da69799bd #25570 03240 Hardware name: linux,dummy-virt (DT) 03240 Workqueue: btree_update btree_interior_update_work 03240 pstate: 00001005 (nzcv daif -PAN -UAO -TCO -DIT +SSBS BTYPE=--) 03240 pc : closure_put+0x224/0x2a0 03240 lr : closure_put+0x24/0x2a0 03240 sp : ffff0000d12071c0 03240 x29: ffff0000d12071c0 x28: dfff800000000000 x27: ffff0000d1207360 03240 x26: 0000000000000040 x25: 0000000000000040 x24: 0000000000000040 03240 x23: ffff0000c1f20180 x22: 0000000000000000 x21: ffff0000c1f20168 03240 x20: 0000000040000000 x19: ffff0000c1f20140 x18: 0000000000000001 03240 x17: 0000000000003aa0 x16: 0000000000003ad0 x15: 1fffe0001c326974 03240 x14: 0000000000000a1e x13: 0000000000000000 x12: 1fffe000183e402d 03240 x11: ffff6000183e402d x10: dfff800000000000 x9 : ffff6000183e402e 03240 x8 : 0000000000000001 x7 : 00009fffe7c1bfd3 x6 : ffff0000c1f2016b 03240 x5 : ffff0000c1f20168 x4 : ffff6000183e402e x3 : ffff800081391954 03240 x2 : 0000000000000001 x1 : 0000000000000000 x0 : 00000000a8000000 03240 Call trace: 03240 closure_put+0x224/0x2a0 03240 bch2_check_for_deadlock+0x910/0x1028 03240 bch2_six_check_for_deadlock+0x1c/0x30 03240 six_lock_slowpath.isra.0+0x29c/0xed0 03240 six_lock_ip_waiter+0xa8/0xf8 03240 __bch2_btree_node_lock_write+0x14c/0x298 03240 bch2_trans_lock_write+0x6d4/0xb10 03240 __bch2_trans_commit+0x135c/0x5520 03240 btree_interior_update_work+0x1248/0x1c10 03240 process_scheduled_works+0x53c/0xd90 03240 worker_thread+0x370/0x8c8 03240 kthread+0x258/0x2e8 03240 ret_from_fork+0x10/0x20 03240 Code: aa1303e0 d63f0020 a94363f7 17ffff8c (d4210000) 03240 ---[ end trace 0000000000000000 ]--- 03240 Kernel panic - not syncing: Oops - BUG: Fatal exception 03240 SMP: stopping secondary CPUs 03241 SMP: failed to stop secondary CPUs 13,15 03241 Kernel Offset: disabled 03241 CPU features: 0x00,00000003,80000008,4240500b 03241 Memory Limit: none 03241 ---[ end Kernel panic - not syncing: Oops - BUG: Fatal exception ]--- 03246 ========= FAILED TIMEOUT copygc_torture_no_checksum in 7200s
CVE-2024-42251 1 Linux 1 Linux Kernel 2024-09-06 N/A 5.5 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: mm: page_ref: remove folio_try_get_rcu() The below bug was reported on a non-SMP kernel: [ 275.267158][ T4335] ------------[ cut here ]------------ [ 275.267949][ T4335] kernel BUG at include/linux/page_ref.h:275! [ 275.268526][ T4335] invalid opcode: 0000 [#1] KASAN PTI [ 275.269001][ T4335] CPU: 0 PID: 4335 Comm: trinity-c3 Not tainted 6.7.0-rc4-00061-gefa7df3e3bb5 #1 [ 275.269787][ T4335] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014 [ 275.270679][ T4335] RIP: 0010:try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3)) [ 275.272813][ T4335] RSP: 0018:ffffc90005dcf650 EFLAGS: 00010202 [ 275.273346][ T4335] RAX: 0000000000000246 RBX: ffffea00066e0000 RCX: 0000000000000000 [ 275.274032][ T4335] RDX: fffff94000cdc007 RSI: 0000000000000004 RDI: ffffea00066e0034 [ 275.274719][ T4335] RBP: ffffea00066e0000 R08: 0000000000000000 R09: fffff94000cdc006 [ 275.275404][ T4335] R10: ffffea00066e0037 R11: 0000000000000000 R12: 0000000000000136 [ 275.276106][ T4335] R13: ffffea00066e0034 R14: dffffc0000000000 R15: ffffea00066e0008 [ 275.276790][ T4335] FS: 00007fa2f9b61740(0000) GS:ffffffff89d0d000(0000) knlGS:0000000000000000 [ 275.277570][ T4335] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 275.278143][ T4335] CR2: 00007fa2f6c00000 CR3: 0000000134b04000 CR4: 00000000000406f0 [ 275.278833][ T4335] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 275.279521][ T4335] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 275.280201][ T4335] Call Trace: [ 275.280499][ T4335] <TASK> [ 275.280751][ T4335] ? die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434 arch/x86/kernel/dumpstack.c:447) [ 275.281087][ T4335] ? do_trap (arch/x86/kernel/traps.c:112 arch/x86/kernel/traps.c:153) [ 275.281463][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3)) [ 275.281884][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3)) [ 275.282300][ T4335] ? do_error_trap (arch/x86/kernel/traps.c:174) [ 275.282711][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3)) [ 275.283129][ T4335] ? handle_invalid_op (arch/x86/kernel/traps.c:212) [ 275.283561][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3)) [ 275.283990][ T4335] ? exc_invalid_op (arch/x86/kernel/traps.c:264) [ 275.284415][ T4335] ? asm_exc_invalid_op (arch/x86/include/asm/idtentry.h:568) [ 275.284859][ T4335] ? try_get_folio (include/linux/page_ref.h:275 (discriminator 3) mm/gup.c:79 (discriminator 3)) [ 275.285278][ T4335] try_grab_folio (mm/gup.c:148) [ 275.285684][ T4335] __get_user_pages (mm/gup.c:1297 (discriminator 1)) [ 275.286111][ T4335] ? __pfx___get_user_pages (mm/gup.c:1188) [ 275.286579][ T4335] ? __pfx_validate_chain (kernel/locking/lockdep.c:3825) [ 275.287034][ T4335] ? mark_lock (kernel/locking/lockdep.c:4656 (discriminator 1)) [ 275.287416][ T4335] __gup_longterm_locked (mm/gup.c:1509 mm/gup.c:2209) [ 275.288192][ T4335] ? __pfx___gup_longterm_locked (mm/gup.c:2204) [ 275.288697][ T4335] ? __pfx_lock_acquire (kernel/locking/lockdep.c:5722) [ 275.289135][ T4335] ? __pfx___might_resched (kernel/sched/core.c:10106) [ 275.289595][ T4335] pin_user_pages_remote (mm/gup.c:3350) [ 275.290041][ T4335] ? __pfx_pin_user_pages_remote (mm/gup.c:3350) [ 275.290545][ T4335] ? find_held_lock (kernel/locking/lockdep.c:5244 (discriminator 1)) [ 275.290961][ T4335] ? mm_access (kernel/fork.c:1573) [ 275.291353][ T4335] process_vm_rw_single_vec+0x142/0x360 [ 275.291900][ T4335] ? __pfx_process_vm_rw_single_vec+0x10/0x10 [ 275.292471][ T4335] ? mm_access (kernel/fork.c:1573) [ 275.292859][ T4335] process_vm_rw_core+0x272/0x4e0 [ 275.293384][ T4335] ? hlock_class (a ---truncated---
CVE-2024-43887 1 Linux 1 Linux Kernel 2024-09-05 N/A 4.7 MEDIUM
In the Linux kernel, the following vulnerability has been resolved: net/tcp: Disable TCP-AO static key after RCU grace period The lifetime of TCP-AO static_key is the same as the last tcp_ao_info. On the socket destruction tcp_ao_info ceases to be with RCU grace period, while tcp-ao static branch is currently deferred destructed. The static key definition is : DEFINE_STATIC_KEY_DEFERRED_FALSE(tcp_ao_needed, HZ); which means that if RCU grace period is delayed by more than a second and tcp_ao_needed is in the process of disablement, other CPUs may yet see tcp_ao_info which atent dead, but soon-to-be. And that breaks the assumption of static_key_fast_inc_not_disabled(). See the comment near the definition: > * The caller must make sure that the static key can't get disabled while > * in this function. It doesn't patch jump labels, only adds a user to > * an already enabled static key. Originally it was introduced in commit eb8c507296f6 ("jump_label: Prevent key->enabled int overflow"), which is needed for the atomic contexts, one of which would be the creation of a full socket from a request socket. In that atomic context, it's known by the presence of the key (md5/ao) that the static branch is already enabled. So, the ref counter for that static branch is just incremented instead of holding the proper mutex. static_key_fast_inc_not_disabled() is just a helper for such usage case. But it must not be used if the static branch could get disabled in parallel as it's not protected by jump_label_mutex and as a result, races with jump_label_update() implementation details. Happened on netdev test-bot[1], so not a theoretical issue: [] jump_label: Fatal kernel bug, unexpected op at tcp_inbound_hash+0x1a7/0x870 [ffffffffa8c4e9b7] (eb 50 0f 1f 44 != 66 90 0f 1f 00)) size:2 type:1 [] ------------[ cut here ]------------ [] kernel BUG at arch/x86/kernel/jump_label.c:73! [] Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI [] CPU: 3 PID: 243 Comm: kworker/3:3 Not tainted 6.10.0-virtme #1 [] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [] Workqueue: events jump_label_update_timeout [] RIP: 0010:__jump_label_patch+0x2f6/0x350 ... [] Call Trace: [] <TASK> [] arch_jump_label_transform_queue+0x6c/0x110 [] __jump_label_update+0xef/0x350 [] __static_key_slow_dec_cpuslocked.part.0+0x3c/0x60 [] jump_label_update_timeout+0x2c/0x40 [] process_one_work+0xe3b/0x1670 [] worker_thread+0x587/0xce0 [] kthread+0x28a/0x350 [] ret_from_fork+0x31/0x70 [] ret_from_fork_asm+0x1a/0x30 [] </TASK> [] Modules linked in: veth [] ---[ end trace 0000000000000000 ]--- [] RIP: 0010:__jump_label_patch+0x2f6/0x350 [1]: https://netdev-3.bots.linux.dev/vmksft-tcp-ao-dbg/results/696681/5-connect-deny-ipv6/stderr