Total
27 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2021-1231 | 1 Cisco | 41 Nexus 9000v, Nexus 92160yc-x, Nexus 92300yc and 38 more | 2024-11-21 | 2.9 LOW | 4.7 MEDIUM |
A vulnerability in the Link Layer Discovery Protocol (LLDP) for Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) mode could allow an unauthenticated, adjacent attacker to disable switching on a small form-factor pluggable (SFP) interface. This vulnerability is due to incomplete validation of the source of a received LLDP packet. An attacker could exploit this vulnerability by sending a crafted LLDP packet on an SFP interface to an affected device. A successful exploit could allow the attacker to disable switching on the SFP interface, which could disrupt network traffic. | |||||
CVE-2021-1230 | 1 Cisco | 41 Nexus 9000v, Nexus 92160yc-x, Nexus 92300yc and 38 more | 2024-11-21 | 7.1 HIGH | 8.6 HIGH |
A vulnerability with the Border Gateway Protocol (BGP) for Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) mode could allow an unauthenticated, remote attacker to cause a routing process to crash, which could lead to a denial of service (DoS) condition. This vulnerability is due to an issue with the installation of routes upon receipt of a BGP update. An attacker could exploit this vulnerability by sending a crafted BGP update to an affected device. A successful exploit could allow the attacker to cause the routing process to crash, which could cause the device to reload. This vulnerability applies to both Internal BGP (IBGP) and External BGP (EBGP). Note: The Cisco implementation of BGP accepts incoming BGP traffic from explicitly configured peers only. To exploit this vulnerability, an attacker would need to send a specific BGP update message over an established TCP connection that appears to come from a trusted BGP peer. | |||||
CVE-2021-1229 | 1 Cisco | 86 Mds 9148s, Mds 9250i, Mds 9706 and 83 more | 2024-11-21 | 4.3 MEDIUM | 5.8 MEDIUM |
A vulnerability in ICMP Version 6 (ICMPv6) processing in Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a slow system memory leak, which over time could lead to a denial of service (DoS) condition. This vulnerability is due to improper error handling when an IPv6-configured interface receives a specific type of ICMPv6 packet. An attacker could exploit this vulnerability by sending a sustained rate of crafted ICMPv6 packets to a local IPv6 address on a targeted device. A successful exploit could allow the attacker to cause a system memory leak in the ICMPv6 process on the device. As a result, the ICMPv6 process could run out of system memory and stop processing traffic. The device could then drop all ICMPv6 packets, causing traffic instability on the device. Restoring device functionality would require a device reboot. | |||||
CVE-2021-1228 | 1 Cisco | 41 Nexus 9000v, Nexus 92160yc-x, Nexus 92300yc and 38 more | 2024-11-21 | 3.3 LOW | 7.4 HIGH |
A vulnerability in the fabric infrastructure VLAN connection establishment of Cisco Nexus 9000 Series Fabric Switches in Application Centric Infrastructure (ACI) Mode could allow an unauthenticated, adjacent attacker to bypass security validations and connect an unauthorized server to the infrastructure VLAN. This vulnerability is due to insufficient security requirements during the Link Layer Discovery Protocol (LLDP) setup phase of the infrastructure VLAN. An attacker could exploit this vulnerability by sending a crafted LLDP packet on the adjacent subnet to an affected device. A successful exploit could allow the attacker to connect an unauthorized server to the infrastructure VLAN, which is highly privileged. With a connection to the infrastructure VLAN, the attacker can make unauthorized connections to Cisco Application Policy Infrastructure Controller (APIC) services or join other host endpoints. | |||||
CVE-2024-20286 | 1 Cisco | 232 N9k-c92160yc-x, N9k-c92300yc, N9k-c92304qc and 229 more | 2024-10-22 | N/A | 8.8 HIGH |
A vulnerability in the Python interpreter of Cisco NX-OS Software could allow an authenticated, low-privileged, local attacker to escape the Python sandbox and gain unauthorized access to the underlying operating system of the device. The vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by manipulating specific functions within the Python interpreter. A successful exploit could allow an attacker to escape the Python sandbox and execute arbitrary commands on the underlying operating system with the privileges of the authenticated user. Note: An attacker must be authenticated with Python execution privileges to exploit these vulnerabilities. For more information regarding Python execution privileges, see product-specific documentation, such as the section of the Cisco Nexus 9000 Series NX-OS Programmability Guide. | |||||
CVE-2024-20285 | 1 Cisco | 232 N9k-c92160yc-x, N9k-c92300yc, N9k-c92304qc and 229 more | 2024-10-22 | N/A | 8.8 HIGH |
A vulnerability in the Python interpreter of Cisco NX-OS Software could allow an authenticated, low-privileged, local attacker to escape the Python sandbox and gain unauthorized access to the underlying operating system of the device. The vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by manipulating specific functions within the Python interpreter. A successful exploit could allow an attacker to escape the Python sandbox and execute arbitrary commands on the underlying operating system with the privileges of the authenticated user. Note: An attacker must be authenticated with Python execution privileges to exploit these vulnerabilities. For more information regarding Python execution privileges, see product-specific documentation, such as the section of the Cisco Nexus 9000 Series NX-OS Programmability Guide. | |||||
CVE-2024-20284 | 1 Cisco | 232 N9k-c92160yc-x, N9k-c92300yc, N9k-c92304qc and 229 more | 2024-10-17 | N/A | 8.8 HIGH |
A vulnerability in the Python interpreter of Cisco NX-OS Software could allow an authenticated, low-privileged, local attacker to escape the Python sandbox and gain unauthorized access to the underlying operating system of the device. The vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by manipulating specific functions within the Python interpreter. A successful exploit could allow an attacker to escape the Python sandbox and execute arbitrary commands on the underlying operating system with the privileges of the authenticated user. Note: An attacker must be authenticated with Python execution privileges to exploit these vulnerabilities. For more information regarding Python execution privileges, see product-specific documentation, such as the section of the Cisco Nexus 9000 Series NX-OS Programmability Guide. |