Total
43 CVE
CVE | Vendors | Products | Updated | CVSS v2 | CVSS v3 |
---|---|---|---|---|---|
CVE-2021-34703 | 1 Cisco | 203 1000 Integrated Services Router, 1100-4g\/6g Integrated Services Router, 1100-4p Integrated Services Router and 200 more | 2024-02-28 | 6.8 MEDIUM | 6.5 MEDIUM |
A vulnerability in the Link Layer Discovery Protocol (LLDP) message parser of Cisco IOS Software and Cisco IOS XE Software could allow an attacker to trigger a reload of an affected device, resulting in a denial of service (DoS) condition. This vulnerability is due to improper initialization of a buffer. An attacker could exploit this vulnerability via any of the following methods: An authenticated, remote attacker could access the LLDP neighbor table via either the CLI or SNMP while the device is in a specific state. An unauthenticated, adjacent attacker could corrupt the LLDP neighbor table by injecting specific LLDP frames into the network and then waiting for an administrator of the device or a network management system (NMS) managing the device to retrieve the LLDP neighbor table of the device via either the CLI or SNMP. An authenticated, adjacent attacker with SNMP read-only credentials or low privileges on the device CLI could corrupt the LLDP neighbor table by injecting specific LLDP frames into the network and then accessing the LLDP neighbor table via either the CLI or SNMP. A successful exploit could allow the attacker to cause the affected device to crash, resulting in a reload of the device. | |||||
CVE-2021-34725 | 1 Cisco | 49 1000 Integrated Services Router, 1100-4g\/6g Integrated Services Router, 1100-4p Integrated Services Router and 46 more | 2024-02-28 | 7.2 HIGH | 6.7 MEDIUM |
A vulnerability in the CLI of Cisco IOS XE SD-WAN Software could allow an authenticated, local attacker to inject arbitrary commands to be executed with root-level privileges on the underlying operating system. This vulnerability is due to insufficient input validation on certain CLI commands. An attacker could exploit this vulnerability by authenticating to an affected device and submitting crafted input to the CLI. The attacker must be authenticated as an administrative user to execute the affected commands. A successful exploit could allow the attacker to execute commands with root-level privileges. | |||||
CVE-2021-1529 | 1 Cisco | 57 1000 Integrated Services Router, 1100-4g\/6g Integrated Services Router, 1100-4p Integrated Services Router and 54 more | 2024-02-28 | 6.9 MEDIUM | 7.8 HIGH |
A vulnerability in the CLI of Cisco IOS XE SD-WAN Software could allow an authenticated, local attacker to execute arbitrary commands with root privileges. The vulnerability is due to insufficient input validation by the system CLI. An attacker could exploit this vulnerability by authenticating to an affected device and submitting crafted input to the system CLI. A successful exploit could allow the attacker to execute commands on the underlying operating system with root privileges. | |||||
CVE-2021-34727 | 1 Cisco | 49 1000 Integrated Services Router, 1100-4g\/6g Integrated Services Router, 1100-4p Integrated Services Router and 46 more | 2024-02-28 | 10.0 HIGH | 9.8 CRITICAL |
A vulnerability in the vDaemon process in Cisco IOS XE SD-WAN Software could allow an unauthenticated, remote attacker to cause a buffer overflow on an affected device. This vulnerability is due to insufficient bounds checking when an affected device processes traffic. An attacker could exploit this vulnerability by sending crafted traffic to the device. A successful exploit could allow the attacker to cause a buffer overflow and possibly execute arbitrary commands with root-level privileges, or cause the device to reload, which could result in a denial of service condition. | |||||
CVE-2021-1621 | 1 Cisco | 45 1000 Integrated Services Router, 1100-4g\/6g Integrated Services Router, 1100-4p Integrated Services Router and 42 more | 2024-02-28 | 3.3 LOW | 7.4 HIGH |
A vulnerability in the Layer 2 punt code of Cisco IOS XE Software could allow an unauthenticated, adjacent attacker to cause a queue wedge on an interface that receives specific Layer 2 frames, resulting in a denial of service (DoS) condition. This vulnerability is due to improper handling of certain Layer 2 frames. An attacker could exploit this vulnerability by sending specific Layer 2 frames on the segment the router is connected to. A successful exploit could allow the attacker to cause a queue wedge on the interface, resulting in a DoS condition. | |||||
CVE-2020-3508 | 1 Cisco | 141 1000v, 1100-4g Integrated Services Router, 1100-4gltegb Integrated Services Router and 138 more | 2024-02-28 | 6.1 MEDIUM | 7.4 HIGH |
A vulnerability in the IP Address Resolution Protocol (ARP) feature of Cisco IOS XE Software for Cisco ASR 1000 Series Aggregation Services Routers with a 20-Gbps Embedded Services Processor (ESP) installed could allow an unauthenticated, adjacent attacker to cause an affected device to reload, resulting in a denial of service condition. The vulnerability is due to insufficient error handling when an affected device has reached platform limitations. An attacker could exploit this vulnerability by sending a malicious series of IP ARP messages to an affected device. A successful exploit could allow the attacker to exhaust system resources, which would eventually cause the affected device to reload. | |||||
CVE-2020-3428 | 1 Cisco | 74 1100 Integrated Services Router, 1101 Integrated Services Router, 1109 Integrated Services Router and 71 more | 2024-02-28 | 6.1 MEDIUM | 6.5 MEDIUM |
A vulnerability in the WLAN Local Profiling feature of Cisco IOS XE Wireless Controller Software for the Cisco Catalyst 9000 Family could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to incorrect parsing of HTTP packets while performing HTTP-based endpoint device classifications. An attacker could exploit this vulnerability by sending a crafted HTTP packet to an affected device. A successful exploit could cause an affected device to reboot, resulting in a DoS condition. | |||||
CVE-2020-3425 | 1 Cisco | 110 1100 Integrated Services Router, 1101 Integrated Services Router, 1109 Integrated Services Router and 107 more | 2024-02-28 | 6.5 MEDIUM | 8.8 HIGH |
Multiple vulnerabilities in the web management framework of Cisco IOS XE Software could allow an authenticated, remote attacker with read-only privileges to elevate privileges to the level of an Administrator user on an affected device. For more information about these vulnerabilities, see the Details section of this advisory. | |||||
CVE-2021-1371 | 1 Cisco | 17 1100 Integrated Services Router, 1101 Integrated Services Router, 1109 Integrated Services Router and 14 more | 2024-02-28 | 7.2 HIGH | 6.6 MEDIUM |
A vulnerability in the role-based access control of Cisco IOS XE SD-WAN Software could allow an authenticated, local attacker with read-only privileges to obtain administrative privileges by using the console port when the device is in the default SD-WAN configuration. This vulnerability occurs because the default configuration is applied for console authentication and authorization. An attacker could exploit this vulnerability by connecting to the console port and authenticating as a read-only user. A successful exploit could allow a user with read-only permissions to access administrative privileges. | |||||
CVE-2020-3423 | 1 Cisco | 26 1100 Integrated Services Router, 1101 Integrated Services Router, 1109 Integrated Services Router and 23 more | 2024-02-28 | 7.2 HIGH | 6.7 MEDIUM |
A vulnerability in the implementation of the Lua interpreter that is integrated in Cisco IOS XE Software could allow an authenticated, local attacker to execute arbitrary code with root privileges on the underlying Linux operating system (OS) of an affected device. The vulnerability is due to insufficient restrictions on Lua function calls within the context of user-supplied Lua scripts. An attacker with valid administrative credentials could exploit this vulnerability by submitting a malicious Lua script. When this file is processed, an exploitable buffer overflow condition could occur. A successful exploit could allow the attacker to execute arbitrary code with root privileges on the underlying Linux OS of the affected device. | |||||
CVE-2021-1236 | 2 Cisco, Snort | 19 1100-4p Integrated Services Router, 1100-8p Integrated Services Router, 1101-4p Integrated Services Router and 16 more | 2024-02-28 | 5.0 MEDIUM | 5.3 MEDIUM |
Multiple Cisco products are affected by a vulnerability in the Snort application detection engine that could allow an unauthenticated, remote attacker to bypass the configured policies on an affected system. The vulnerability is due to a flaw in the detection algorithm. An attacker could exploit this vulnerability by sending crafted packets that would flow through an affected system. A successful exploit could allow the attacker to bypass the configured policies and deliver a malicious payload to the protected network. | |||||
CVE-2020-3480 | 1 Cisco | 26 1100 Integrated Services Router, 1101 Integrated Services Router, 1109 Integrated Services Router and 23 more | 2024-02-28 | 7.8 HIGH | 8.6 HIGH |
Multiple vulnerabilities in the Zone-Based Firewall feature of Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause the device to reload or stop forwarding traffic through the firewall. The vulnerabilities are due to incomplete handling of Layer 4 packets through the device. An attacker could exploit these vulnerabilities by sending a certain sequence of traffic patterns through the device. A successful exploit could allow the attacker to cause the device to reload or stop forwarding traffic through the firewall, resulting in a denial of service. For more information about these vulnerabilities, see the Details section of this advisory. | |||||
CVE-2020-3421 | 1 Cisco | 24 1100 Integrated Services Router, 1101 Integrated Services Router, 1109 Integrated Services Router and 21 more | 2024-02-28 | 7.1 HIGH | 7.5 HIGH |
Multiple vulnerabilities in the Zone-Based Firewall feature of Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause the device to reload or stop forwarding traffic through the firewall. The vulnerabilities are due to incomplete handling of Layer 4 packets through the device. An attacker could exploit these vulnerabilities by sending a certain sequence of traffic patterns through the device. A successful exploit could allow the attacker to cause the device to reload or stop forwarding traffic through the firewall, resulting in a denial of service. For more information about these vulnerabilities, see the Details section of this advisory. | |||||
CVE-2021-1223 | 2 Cisco, Snort | 19 1100-4p Integrated Services Router, 1100-8p Integrated Services Router, 1101-4p Integrated Services Router and 16 more | 2024-02-28 | 5.0 MEDIUM | 7.5 HIGH |
Multiple Cisco products are affected by a vulnerability in the Snort detection engine that could allow an unauthenticated, remote attacker to bypass a configured file policy for HTTP. The vulnerability is due to incorrect handling of an HTTP range header. An attacker could exploit this vulnerability by sending crafted HTTP packets through an affected device. A successful exploit could allow the attacker to bypass configured file policy for HTTP packets and deliver a malicious payload. | |||||
CVE-2021-1224 | 2 Cisco, Snort | 43 1100-4p Integrated Services Router, 1100-8p Integrated Services Router, 1101-4p Integrated Services Router and 40 more | 2024-02-28 | 5.0 MEDIUM | 5.3 MEDIUM |
Multiple Cisco products are affected by a vulnerability with TCP Fast Open (TFO) when used in conjunction with the Snort detection engine that could allow an unauthenticated, remote attacker to bypass a configured file policy for HTTP. The vulnerability is due to incorrect detection of the HTTP payload if it is contained at least partially within the TFO connection handshake. An attacker could exploit this vulnerability by sending crafted TFO packets with an HTTP payload through an affected device. A successful exploit could allow the attacker to bypass configured file policy for HTTP packets and deliver a malicious payload. | |||||
CVE-2020-3479 | 1 Cisco | 26 1100 Integrated Services Router, 1101 Integrated Services Router, 1109 Integrated Services Router and 23 more | 2024-02-28 | 7.8 HIGH | 7.5 HIGH |
A vulnerability in the implementation of Multiprotocol Border Gateway Protocol (MP-BGP) for the Layer 2 VPN (L2VPN) Ethernet VPN (EVPN) address family in Cisco IOS Software and Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition. The vulnerability is due to incorrect processing of Border Gateway Protocol (BGP) update messages that contain crafted EVPN attributes. An attacker could exploit this vulnerability by sending BGP update messages with specific, malformed attributes to an affected device. A successful exploit could allow the attacker to cause an affected device to crash, resulting in a DoS condition. | |||||
CVE-2019-12657 | 1 Cisco | 118 4321 Integrated Services Router, 4331 Integrated Services Router, 4351 Integrated Services Router and 115 more | 2024-02-28 | 7.8 HIGH | 7.5 HIGH |
A vulnerability in Unified Threat Defense (UTD) in Cisco IOS XE Software could allow an unauthenticated, remote attacker to cause an affected device to reload. The vulnerability is due to improper validation of IPv6 packets through the UTD feature. An attacker could exploit this vulnerability by sending IPv6 traffic through an affected device that is configured with UTD. A successful exploit could allow the attacker to cause the device to reload, resulting in a denial of service (DoS) condition. | |||||
CVE-2019-12664 | 1 Cisco | 4 4321 Integrated Services Router, 4331 Integrated Services Router, 4351 Integrated Services Router and 1 more | 2024-02-28 | 5.0 MEDIUM | 7.5 HIGH |
A vulnerability in the Dialer interface feature for ISDN connections in Cisco IOS XE Software for Cisco 4000 Series Integrated Services Routers (ISRs) could allow an unauthenticated, adjacent attacker to pass IPv4 traffic through an ISDN channel prior to successful PPP authentication. The vulnerability is due to insufficient validation of the state of the PPP IP Control Protocol (IPCP). An attacker could exploit this vulnerability by making an ISDN call to an affected device and sending traffic through the ISDN channel prior to successful PPP authentication. Alternatively, an unauthenticated, remote attacker could exploit this vulnerability by sending traffic through an affected device that is configured to exit via an ISDN connection for which both the Dialer interface and the Basic Rate Interface (BRI) have been configured, but the Challenge Handshake Authentication Protocol (CHAP) password for PPP does not match the remote end. A successful exploit could allow the attacker to pass IPv4 traffic through an unauthenticated ISDN connection for a few seconds, from initial ISDN call setup until PPP authentication fails. | |||||
CVE-2019-12654 | 1 Cisco | 17 1000 Integrated Services Router, 1100 Integrated Services Router, 4000 Integrated Services Router and 14 more | 2024-02-28 | 7.8 HIGH | 7.5 HIGH |
A vulnerability in the common Session Initiation Protocol (SIP) library of Cisco IOS and IOS XE Software could allow an unauthenticated, remote attacker to trigger a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to insufficient sanity checks on an internal data structure. An attacker could exploit this vulnerability by sending a sequence of malicious SIP messages to an affected device. An exploit could allow the attacker to cause a NULL pointer dereference, resulting in a crash of the iosd process. This triggers a reload of the device. | |||||
CVE-2019-1649 | 1 Cisco | 193 1120 Connected Grid Router, 1240 Connected Grid Router, 15454-m-wse-k9 and 190 more | 2024-02-28 | 7.2 HIGH | 6.7 MEDIUM |
A vulnerability in the logic that handles access control to one of the hardware components in Cisco's proprietary Secure Boot implementation could allow an authenticated, local attacker to write a modified firmware image to the component. This vulnerability affects multiple Cisco products that support hardware-based Secure Boot functionality. The vulnerability is due to an improper check on the area of code that manages on-premise updates to a Field Programmable Gate Array (FPGA) part of the Secure Boot hardware implementation. An attacker with elevated privileges and access to the underlying operating system that is running on the affected device could exploit this vulnerability by writing a modified firmware image to the FPGA. A successful exploit could either cause the device to become unusable (and require a hardware replacement) or allow tampering with the Secure Boot verification process, which under some circumstances may allow the attacker to install and boot a malicious software image. An attacker will need to fulfill all the following conditions to attempt to exploit this vulnerability: Have privileged administrative access to the device. Be able to access the underlying operating system running on the device; this can be achieved either by using a supported, documented mechanism or by exploiting another vulnerability that would provide an attacker with such access. Develop or have access to a platform-specific exploit. An attacker attempting to exploit this vulnerability across multiple affected platforms would need to research each one of those platforms and then develop a platform-specific exploit. Although the research process could be reused across different platforms, an exploit developed for a given hardware platform is unlikely to work on a different hardware platform. |