Vulnerabilities (CVE)

Filtered by CWE-416
Total 4928 CVE
CVE Vendors Products Updated CVSS v2 CVSS v3
CVE-2024-3515 2024-11-21 N/A 3.7 LOW
Use after free in Dawn in Google Chrome prior to 123.0.6312.122 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High)
CVE-2024-3299 2024-11-21 N/A 7.8 HIGH
Out-Of-Bounds Write, Use of Uninitialized Resource and Use-After-Free vulnerabilities exist in the file reading procedure in eDrawings from Release SOLIDWORKS 2023 through Release SOLIDWORKS 2024. These vulnerabilities could allow an attacker to execute arbitrary code while opening a specially crafted SLDDRW or SLDPRT file. NOTE: this vulnerability was SPLIT from CVE-2024-1847.
CVE-2024-3171 1 Google 1 Chrome 2024-11-21 N/A 8.8 HIGH
Use after free in Accessibility in Google Chrome prior to 122.0.6261.57 allowed a remote attacker who convinced a user to engage in specific UI gestures to potentially exploit heap corruption via specific UI gestures. (Chromium security severity: Medium)
CVE-2024-3170 1 Google 1 Chrome 2024-11-21 N/A 8.8 HIGH
Use after free in WebRTC in Google Chrome prior to 121.0.6167.85 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High)
CVE-2024-3169 1 Google 1 Chrome 2024-11-21 N/A 8.8 HIGH
Use after free in V8 in Google Chrome prior to 121.0.6167.139 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High)
CVE-2024-3168 1 Google 1 Chrome 2024-11-21 N/A 8.8 HIGH
Use after free in DevTools in Google Chrome prior to 122.0.6261.57 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Medium)
CVE-2024-3158 1 Google 1 Chrome 2024-11-21 N/A 8.8 HIGH
Use after free in Bookmarks in Google Chrome prior to 123.0.6312.105 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: High)
CVE-2024-39672 1 Huawei 2 Emui, Harmonyos 2024-11-21 N/A 8.4 HIGH
Memory request logic vulnerability in the memory module. Impact: Successful exploitation of this vulnerability will affect integrity and availability.
CVE-2024-39528 1 Juniper 2 Junos, Junos Os Evolved 2024-11-21 N/A 5.7 MEDIUM
A Use After Free vulnerability in the Routing Protocol Daemon (rpd) of Juniper Networks Junos OS and Junos OS Evolved allows an authenticated, network-based attacker to cause a Denial of Service (DoS).On all Junos OS and Junos Evolved platforms, if a routing-instance deactivation is triggered, and at the same time a specific SNMP request is received, a segmentation fault occurs which causes rpd to crash and restart. This issue affects:    Junos OS: * All versions before 21.2R3-S8,  * 21.4 versions before 21.4R3-S5, * 22.2 versions before 22.2R3-S3, * 22.3 versions before 22.3R3-S2, * 22.4 versions before 22.4R3, * 23.2 versions before 23.2R2.   Junos OS Evolved: * All versions before 21.2R3-S8-EVO, * 21.4-EVO versions before 21.4R3-S5-EVO, * 22.2-EVO versions before 22.2R3-S3-EVO,  * 22.3-EVO versions before 22.3R3-S2-EVO, * 22.4-EVO versions before 22.4R3-EVO, * 23.2-EVO versions before 23.2R2-EVO.
CVE-2024-39510 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: cachefiles: fix slab-use-after-free in cachefiles_ondemand_daemon_read() We got the following issue in a fuzz test of randomly issuing the restore command: ================================================================== BUG: KASAN: slab-use-after-free in cachefiles_ondemand_daemon_read+0xb41/0xb60 Read of size 8 at addr ffff888122e84088 by task ondemand-04-dae/963 CPU: 13 PID: 963 Comm: ondemand-04-dae Not tainted 6.8.0-dirty #564 Call Trace: kasan_report+0x93/0xc0 cachefiles_ondemand_daemon_read+0xb41/0xb60 vfs_read+0x169/0xb50 ksys_read+0xf5/0x1e0 Allocated by task 116: kmem_cache_alloc+0x140/0x3a0 cachefiles_lookup_cookie+0x140/0xcd0 fscache_cookie_state_machine+0x43c/0x1230 [...] Freed by task 792: kmem_cache_free+0xfe/0x390 cachefiles_put_object+0x241/0x480 fscache_cookie_state_machine+0x5c8/0x1230 [...] ================================================================== Following is the process that triggers the issue: mount | daemon_thread1 | daemon_thread2 ------------------------------------------------------------ cachefiles_withdraw_cookie cachefiles_ondemand_clean_object(object) cachefiles_ondemand_send_req REQ_A = kzalloc(sizeof(*req) + data_len) wait_for_completion(&REQ_A->done) cachefiles_daemon_read cachefiles_ondemand_daemon_read REQ_A = cachefiles_ondemand_select_req msg->object_id = req->object->ondemand->ondemand_id ------ restore ------ cachefiles_ondemand_restore xas_for_each(&xas, req, ULONG_MAX) xas_set_mark(&xas, CACHEFILES_REQ_NEW) cachefiles_daemon_read cachefiles_ondemand_daemon_read REQ_A = cachefiles_ondemand_select_req copy_to_user(_buffer, msg, n) xa_erase(&cache->reqs, id) complete(&REQ_A->done) ------ close(fd) ------ cachefiles_ondemand_fd_release cachefiles_put_object cachefiles_put_object kmem_cache_free(cachefiles_object_jar, object) REQ_A->object->ondemand->ondemand_id // object UAF !!! When we see the request within xa_lock, req->object must not have been freed yet, so grab the reference count of object before xa_unlock to avoid the above issue.
CVE-2024-39496 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix use-after-free due to race with dev replace While loading a zone's info during creation of a block group, we can race with a device replace operation and then trigger a use-after-free on the device that was just replaced (source device of the replace operation). This happens because at btrfs_load_zone_info() we extract a device from the chunk map into a local variable and then use the device while not under the protection of the device replace rwsem. So if there's a device replace operation happening when we extract the device and that device is the source of the replace operation, we will trigger a use-after-free if before we finish using the device the replace operation finishes and frees the device. Fix this by enlarging the critical section under the protection of the device replace rwsem so that all uses of the device are done inside the critical section.
CVE-2024-39495 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: greybus: Fix use-after-free bug in gb_interface_release due to race condition. In gb_interface_create, &intf->mode_switch_completion is bound with gb_interface_mode_switch_work. Then it will be started by gb_interface_request_mode_switch. Here is the relevant code. if (!queue_work(system_long_wq, &intf->mode_switch_work)) { ... } If we call gb_interface_release to make cleanup, there may be an unfinished work. This function will call kfree to free the object "intf". However, if gb_interface_mode_switch_work is scheduled to run after kfree, it may cause use-after-free error as gb_interface_mode_switch_work will use the object "intf". The possible execution flow that may lead to the issue is as follows: CPU0 CPU1 | gb_interface_create | gb_interface_request_mode_switch gb_interface_release | kfree(intf) (free) | | gb_interface_mode_switch_work | mutex_lock(&intf->mutex) (use) Fix it by canceling the work before kfree.
CVE-2024-39494 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: ima: Fix use-after-free on a dentry's dname.name ->d_name.name can change on rename and the earlier value can be freed; there are conditions sufficient to stabilize it (->d_lock on dentry, ->d_lock on its parent, ->i_rwsem exclusive on the parent's inode, rename_lock), but none of those are met at any of the sites. Take a stable snapshot of the name instead.
CVE-2024-39486 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.0 HIGH
In the Linux kernel, the following vulnerability has been resolved: drm/drm_file: Fix pid refcounting race <maarten.lankhorst@linux.intel.com>, Maxime Ripard <mripard@kernel.org>, Thomas Zimmermann <tzimmermann@suse.de> filp->pid is supposed to be a refcounted pointer; however, before this patch, drm_file_update_pid() only increments the refcount of a struct pid after storing a pointer to it in filp->pid and dropping the dev->filelist_mutex, making the following race possible: process A process B ========= ========= begin drm_file_update_pid mutex_lock(&dev->filelist_mutex) rcu_replace_pointer(filp->pid, <pid B>, 1) mutex_unlock(&dev->filelist_mutex) begin drm_file_update_pid mutex_lock(&dev->filelist_mutex) rcu_replace_pointer(filp->pid, <pid A>, 1) mutex_unlock(&dev->filelist_mutex) get_pid(<pid A>) synchronize_rcu() put_pid(<pid B>) *** pid B reaches refcount 0 and is freed here *** get_pid(<pid B>) *** UAF *** synchronize_rcu() put_pid(<pid A>) As far as I know, this race can only occur with CONFIG_PREEMPT_RCU=y because it requires RCU to detect a quiescent state in code that is not explicitly calling into the scheduler. This race leads to use-after-free of a "struct pid". It is probably somewhat hard to hit because process A has to pass through a synchronize_rcu() operation while process B is between mutex_unlock() and get_pid(). Fix it by ensuring that by the time a pointer to the current task's pid is stored in the file, an extra reference to the pid has been taken. This fix also removes the condition for synchronize_rcu(); I think that optimization is unnecessary complexity, since in that case we would usually have bailed out on the lockless check above.
CVE-2024-39463 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: 9p: add missing locking around taking dentry fid list Fix a use-after-free on dentry's d_fsdata fid list when a thread looks up a fid through dentry while another thread unlinks it: UAF thread: refcount_t: addition on 0; use-after-free. p9_fid_get linux/./include/net/9p/client.h:262 v9fs_fid_find+0x236/0x280 linux/fs/9p/fid.c:129 v9fs_fid_lookup_with_uid linux/fs/9p/fid.c:181 v9fs_fid_lookup+0xbf/0xc20 linux/fs/9p/fid.c:314 v9fs_vfs_getattr_dotl+0xf9/0x360 linux/fs/9p/vfs_inode_dotl.c:400 vfs_statx+0xdd/0x4d0 linux/fs/stat.c:248 Freed by: p9_fid_destroy (inlined) p9_client_clunk+0xb0/0xe0 linux/net/9p/client.c:1456 p9_fid_put linux/./include/net/9p/client.h:278 v9fs_dentry_release+0xb5/0x140 linux/fs/9p/vfs_dentry.c:55 v9fs_remove+0x38f/0x620 linux/fs/9p/vfs_inode.c:518 vfs_unlink+0x29a/0x810 linux/fs/namei.c:4335 The problem is that d_fsdata was not accessed under d_lock, because d_release() normally is only called once the dentry is otherwise no longer accessible but since we also call it explicitly in v9fs_remove that lock is required: move the hlist out of the dentry under lock then unref its fids once they are no longer accessible.
CVE-2024-39305 2024-11-21 N/A 6.5 MEDIUM
Envoy is a cloud-native, open source edge and service proxy. Prior to versions 1.30.4, 1.29.7, 1.28.5, and 1.27.7. Envoy references already freed memory when route hash policy is configured with cookie attributes. Note that this vulnerability has been fixed in the open as the effect would be immediately apparent if it was configured. Memory allocated for holding attribute values is freed after configuration was parsed. During request processing Envoy will attempt to copy content of de-allocated memory into request cookie header. This can lead to arbitrary content of Envoy's memory to be sent to the upstream service or abnormal process termination. This vulnerability is fixed in Envoy versions v1.30.4, v1.29.7, v1.28.5, and v1.27.7. As a workaround, do not use cookie attributes in route action hash policy.
CVE-2024-38630 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: watchdog: cpu5wdt.c: Fix use-after-free bug caused by cpu5wdt_trigger When the cpu5wdt module is removing, the origin code uses del_timer() to de-activate the timer. If the timer handler is running, del_timer() could not stop it and will return directly. If the port region is released by release_region() and then the timer handler cpu5wdt_trigger() calls outb() to write into the region that is released, the use-after-free bug will happen. Change del_timer() to timer_shutdown_sync() in order that the timer handler could be finished before the port region is released.
CVE-2024-38612 2024-11-21 N/A 9.8 CRITICAL
In the Linux kernel, the following vulnerability has been resolved: ipv6: sr: fix invalid unregister error path The error path of seg6_init() is wrong in case CONFIG_IPV6_SEG6_LWTUNNEL is not defined. In that case if seg6_hmac_init() fails, the genl_unregister_family() isn't called. This issue exist since commit 46738b1317e1 ("ipv6: sr: add option to control lwtunnel support"), and commit 5559cea2d5aa ("ipv6: sr: fix possible use-after-free and null-ptr-deref") replaced unregister_pernet_subsys() with genl_unregister_family() in this error path.
CVE-2024-38588 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: ftrace: Fix possible use-after-free issue in ftrace_location() KASAN reports a bug: BUG: KASAN: use-after-free in ftrace_location+0x90/0x120 Read of size 8 at addr ffff888141d40010 by task insmod/424 CPU: 8 PID: 424 Comm: insmod Tainted: G W 6.9.0-rc2+ [...] Call Trace: <TASK> dump_stack_lvl+0x68/0xa0 print_report+0xcf/0x610 kasan_report+0xb5/0xe0 ftrace_location+0x90/0x120 register_kprobe+0x14b/0xa40 kprobe_init+0x2d/0xff0 [kprobe_example] do_one_initcall+0x8f/0x2d0 do_init_module+0x13a/0x3c0 load_module+0x3082/0x33d0 init_module_from_file+0xd2/0x130 __x64_sys_finit_module+0x306/0x440 do_syscall_64+0x68/0x140 entry_SYSCALL_64_after_hwframe+0x71/0x79 The root cause is that, in lookup_rec(), ftrace record of some address is being searched in ftrace pages of some module, but those ftrace pages at the same time is being freed in ftrace_release_mod() as the corresponding module is being deleted: CPU1 | CPU2 register_kprobes() { | delete_module() { check_kprobe_address_safe() { | arch_check_ftrace_location() { | ftrace_location() { | lookup_rec() // USE! | ftrace_release_mod() // Free! To fix this issue: 1. Hold rcu lock as accessing ftrace pages in ftrace_location_range(); 2. Use ftrace_location_range() instead of lookup_rec() in ftrace_location(); 3. Call synchronize_rcu() before freeing any ftrace pages both in ftrace_process_locs()/ftrace_release_mod()/ftrace_free_mem().
CVE-2024-38583 1 Linux 1 Linux Kernel 2024-11-21 N/A 7.8 HIGH
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix use-after-free of timer for log writer thread Patch series "nilfs2: fix log writer related issues". This bug fix series covers three nilfs2 log writer-related issues, including a timer use-after-free issue and potential deadlock issue on unmount, and a potential freeze issue in event synchronization found during their analysis. Details are described in each commit log. This patch (of 3): A use-after-free issue has been reported regarding the timer sc_timer on the nilfs_sc_info structure. The problem is that even though it is used to wake up a sleeping log writer thread, sc_timer is not shut down until the nilfs_sc_info structure is about to be freed, and is used regardless of the thread's lifetime. Fix this issue by limiting the use of sc_timer only while the log writer thread is alive.